HIGHER SECONDARY SECOND TERMINAL EXAMINATION DEC, 2018 Answer Key with Detailed Solution

CHEMISTRY

Sec	Second Year Prepared By : Anoop Chandran S CODE : SSE2			
Qn No	Sub Qn.	Value Points / Scoring Indicators	Split Score	Total Score
1		DDT (Dichloro diphenyl trichloro Ethane) (NCERT page 309)		1
2		(d) or SCN ⁻ (NCERT page 240)		1
3		PH ₃ or (c) – phosphine		1
4		(d) Or Al - Aluminium		1
5		Since the unit of rate constant is S ⁻¹ the Reaction is a <u>First Order Reaction</u>		1
6		 In coordination compounds metals show two types of Valences - Primary and secondary valances. Primary valences are ionisable and are satisfied with Negative ions Secondary valences are non ionisable and are satisfied With neutral or negative ions. The ions bounded by secondary linkages to metals have Characteristics spatial arrangements. (Any Two postulates) 		2
7		Many of the Transition metals are used as catalyst because of Their ability to adopt variable oxidation state. Eg: Vanadium pentoxide in contact process. OR $2I^{-} + S_2O_8^{2^-} \longrightarrow I_2 + 2 SO_4^{2^-}$ Iron(III) catalyses this Reaction.		2
8		Chloroform in presence of light undergo slow reaction with Air to produce poisonous gas carbonyl chloride or phosgene. $2 \text{ CHCl}_3 + \text{O}_2 \longrightarrow 2 \text{ COCl}_2 + 2 \text{ HCl}$		2
9		Due to the larger size of Te than S, H ₂ Te gives out Hydrogen Very easily in aqueous solution. Thus H ₂ Te is more acidic Than H ₂ S.	1	
		Due to the very high electronegativity of Oxygen compared To Sulphur , strong intermolecular H – bonding is possible in the Case of H ₂ O, which is not possible for H ₂ S. Thus H ₂ S		2

16		Sc - 21 - $[Ar] 4s^2 3d^1$	1	
-		Sc ³⁺ - $[Ar]$ - All electrons are paired. Hence diamagnetic		
		$Ti - 22 - [Ar] 4s^2 3d^2$		2
		Ti ⁴⁺ - [Ar] – Since d orbitals are empty, d-d transition of	1	_
		Electrons are not possible.		
17		$[Co(CN)_6]$ and $[Cr(NH_3)_6]$		
18		Rate of the reaction = $-\frac{1}{5}\frac{\Delta[0]}{\Delta t} = \frac{1}{4}\frac{\Delta[NO]}{\Delta t}$		
		$= \frac{1}{4} \times (3.6 \times 10^{-3}) = 9 \times 10^{-4}.$		2
		$\Rightarrow 9x10^{-4} = -\frac{1}{5} \frac{\Delta[0]}{\Delta t}$		
		$5 \text{ x} (9 \text{ x} 10^{-4}) = 4.5 \text{ x} 10^{-3}$		
		→ Rate of disappearance of Oxygen = 4.5×10^{-3} mol l ⁻¹ S ⁻¹ .		
19		Electrical Disintegration or Bredig's arc Method. Colloidal sols of metals such as Gold , silver, platinum.		2
20	(a)	Stephen reaction. Nitriles are reduced to corresponding imines with stannous Chloride in presence of HCl which on hydrolysis gives Aldehyde.	1	
	(b)	RCN + SnCl ₂ + HCl \longrightarrow RCH=NH \longrightarrow RCHO Carboxyllic acids having alpha hydrogen on reaction with Halogen in presence of red phosphorous gives the alpha – Halo carboxylic acids. RCH ₂ COOH + X ₂ \longrightarrow RCH COOH H ₂ O	1	3
	(c)	Etard Reaction Toluene on reaction with CrO_2Cl_2 in CS_2 Followed by hydrolysis gives benzaldehyde (Or Reaction)	1	

21	(a)	OH group directly attached to Benzene ring will only answer		
		This test. So A may be ortho, meta or para cresol and B is		
		Phenol. он сн2-он	1	
		CH ₃		
				3
		O-Cresol Bernzyl alcohol		5
		may be , m/p also (II)		
	(b)	Due to ResonanceAlso Draw the Resonance Structures.	2	
22	(a)	MnO_2 + 4HCl \longrightarrow $MnCl_2$ + Cl_2 + 2H ₂ O	1	
	()		1	3
		$H_2 + Cl_2 \longrightarrow 2HCl$	1	
	(b)	The smoke from supersonic jet planes contains Nitric Oxide NO which reacts with Ozone as follows.	1	
		$NO + O_3 \longrightarrow NO_2 + O_2$		
23	(a)	• Chromate ore on fusion with free access of air gives		
		Sodium carbonate		
		4 FeCr ₂ O ₇ + 8 Na ₂ CO ₃ + 7 O ₂ $\rightarrow 8$ Na ₂ CO ₄ + 2 Fe ₂ O ₃ + 8 CO ₂	1	3
		 This solution on acidification with sulphuric acid give Orange coloured sodium dichromate. 		
		• Later this on treatment with KCl gives Potassium		
		Dichromate.	1	
	(b)	Na ₂ Cr ₂ O ₇ + 2KCl \longrightarrow K ₂ Cr ₂ O ₇ + 2 NaCl Di – or polydentate ligand uses its two or more donor atoms	1	
	~ /	To bind to the single metal atom. It is known as chelating	-	
		ligand.		
24	(a)	Painting/ Galvanisation/Cathodic protection/use of antirust	2	
	(1-)	Solutions such as Bisphenol. (Any two)		3
	(b)	The molar conductivity of a solution when its concentration Approaches Zero is called Limiting Molar conductivity.	1	
		Approactics Zero is cance Entitling Wolar conductivity.		
25	(a)	At 500 – 800 K		
		Conversion of Metal ore to Metal oxide.	•	
		At 900 – 1500K	2	3
		$C + CO_2 \longrightarrow 2CO$ FeO + CO \longrightarrow Fe+CO ₂		-
		Ionoxide get converted to Iron.		

	(b)	(b) The solidified copper obtained from convertor has a blistered appearance due to the evolution of SO ₂ . It is called Blister copper.			
26	(a)	S_N1 Reaction Rate of the reaction depends On concentration of only One reactant.	S_N2 Reaction Rate of the reaction depends on concentration of both the Reactants.	2	
		Reactivity order: $3^0 > 2^\circ > 1^\circ$	Reactivity order 1º>2º>3º		3
	(b)	It is because the byproduct formed are gases (SO ₂ & HCl) And are easily escapable from the reacting system leving behi alkyl halide. $R - OH + SOCl_2 \longrightarrow R - Cl + SO_2(g) + HCl (g)$			
27	(a)	Ferromagnetic. When placed in a magnetic field all domains get alligned in The direction of magnetic field and it persist even after the Magnetic field is removed.		1 ¹ /2	3
	(b)	i) Insulator – Plastic ii) Conductor – Mg iii) Semiconductor – Si			
28	(a)	Binary mixtures having same composition in liquid and Vapour phase and boils at a constant temperature.		1	
	(b)	Given that Vapour pressure of pure liquid A, $P_{A}^{o}=450 \text{ mm}$ of Hg Vapour pressure of pure liquid A, $P_{A}^{o}=700 \text{ mm}$ of Hg Total vapour pressure, ptotal= 600 mm of Hg Use the formula of Raoult's law			3
		$600 = (450 - 700) X_A + 700$ $250 X_A = 100$ XA = 100/250 = 0.4 Use formula $X_B = 1 - X_A$ Plug the values we get		2	

		XB= $1 - 0.4 = 0.6$ use formula $P_A = P_A \times X_A = 450 \times 0.4 = 180 \text{ mm of Hg}$ $P_B = P_B \times XB = 700 \times 0.6 = 420 \text{ mm of Hg}$		
		Now, in the vapour phase: $P_A = y_A \times P_{total}$ $Y_A = P_A / P_{total} = 180/600 = 0.3$ $P_B = 1 - 0.3 = 0.7$		
29	i)	It considers the metal ligand bond to be ionic and there in Only electro static attraction between them./ Ligands are treated as point charges / This Question May create a little confusion among the students. It is not specified whether they have to draw CF splitting in Octahedral or Tetrahedral CF. Any diagram given in NCERT page no 251 / 252. Series of arrangement of ligands arranged in increasing order of their field strength is spectrochemical series.	2 2	4
	ii)	Ligands for which Δ_0 < P is called weak ligands and form high spin complex due to the absence of pairing. Ligands for which Δ_0 >P is called strong field ligands and form low spin complexes.		
30	i)	By heating in aqueous Sodium hydroxide solution at a Temperature of 623K and 300atm pressure.	1	
	ii)	$\underbrace{NH_3}_{NaNO_2 / HCl} \xrightarrow{N_2Cl} \xrightarrow{OH}_{H_2O / Warm} + N_2 + HCl$	1	4
	iii)	$\bigcirc \xrightarrow{\text{Oleum}} \xrightarrow{\text{Oleum}} \xrightarrow{i) \text{ NaOH}} \xrightarrow{i) \text{ NaOH}} \bigcirc \bigcirc$	1	

* Any Challenges in answer key Kindly inform me ...

ANSWER KEY BY: ANOOP CHANDRAN S anoopchandrac17@gmail.com 7902715940 (whatsapp)

SSE25