Higher Secondary Education Half Yearly Examination 2017-18 PHYSICS

HSE II

Maximum Score 60

Qn No		Scoring Inc	licators	Score	Total		
Answer any seven questions from Qn No 1 to 8							
1	(a) (b)	$C = \frac{C_1 C_2}{C_1 + C_2}$ i) When a charge is given to the system it gets equally shared by the		1 1	2		
,	$\begin{array}{c} (0) \\ \text{capacitors.} \\ 2 \\ F = Bilsin\theta \\ F = 0.15 \times 8 \times sin30^{\circ} = 0.6 N/m \end{array}$		1 1	2			
3		Figure (2) Any two properties of paramagnetic material.		1 1	2		
	4	Magnetic fluxteslaLenz's LawConst	ction furnace metre ² servation of energy tromagnetic analogue of	½x4	2		
	5 $v = v_m sin\omega t$ $v = v_{rms} \times \sqrt{2} sin2\pi f t = 311.1 sin 314t volt$		1 1	2			
6		Negative X direction. $E = Bc = 2 \times 10^{-7} \times 3 \times 10^8 = 60Vm^{-1}$ $\overrightarrow{E_z} = 60sin(0.5 \times 10^3 x + 1.5 \times 10^{11} t) \hat{k} Vm^{-1}$		1	2		
7	(a) (b)	velocity		1	2		
8	(a)	0.15 A $i = \epsilon_0 \frac{d\phi_E}{dt}$		1	2		
	(-)		estions from Qn No 9 to 14				
9	(a)	Ng Ng Ng Ng C Ng C C T Magnetic Equator Geographic Equa		2 1	3		
	(b)	zero					

	(a)	The rate of change of magnetic flux is equal to the emf induced. $e = \frac{d\Phi_B}{dt}$	1	
10	(b)	As the loop moves into the field the flux through it increases. By Lenz's law the induced current should flow in a such a direction that the flux decreases. For this the Side PS should experience a force opposite to the direction of notion. By left hand rule this is possible when current flows from P to S. So current in the loop should be along the path PSRQ/Anti clockwise.	2	3
	(a)	inductor	1	
11	(b)	by inserting an iron rod into P any other correct response like change the number of turns, change the area, length etc (1 score)	1	3
	(c)	Maximum energy is wasted across the resistor as heat.	1	
	(a)	Statement of Snell's law.	1	
	(b)	No. because the light travels from rarer to a denser medium.	1	
12	(c)	normal medium 1 medium 2 r	1	3
	(a)	Hypermetropia /farsightedness	1	
13	(b)	$u = -25 \ cm v = -75 \ cm$ $p = \frac{1}{f} = \frac{1}{v} - \frac{1}{u} = -\frac{1}{0.75} + \frac{1}{0.25} = 2.66D$ $f = 37.5 \ cm \ (1 \ score)$	2	3
	(a)	90 ⁰	1	2
14	(b)	$n = \tan p = \tan 52^0 = 1.28$	2	3
		Answer any four questions from Qn No 15 to 19		
	(a)	8 ohm and 32 ohm	1	
15	(b)	Let <i>i</i> is the current through the branch PAQ $i(2 + 24 \parallel 12) = (8 - i) \times 40$ $i(2 + 8) = (8 - i) \times 40$ $i = (8 - i) \times 4$ i = 6.4 A	1 1 1	4
	(c)	(iv) zero (Hint: Balanced Wheatstone's bridge)		
16	(a)	$\rho = Rlm$	1	4

		$\frac{\sin i}{\sin r} = \frac{n_2}{n_1}$							
	Answer any three questions from Qn No 20 to 23								
20	(a)	Young's Double slit experiment.	1						
	(b) (c)	Correct derivation of $\beta = \frac{\lambda D}{d}$	3	5					
		Single slit diffraction pattern.	1						
	(a)	Since the circuit is in resonance $Z = R = 10 \Omega$	1						
21	(b)	$f = \frac{1}{2\pi\sqrt{LC}} \qquad C = \frac{1}{4\pi^2 f^2 L} = 50\mu F$	2	5					
			2						
	(c)	(i) 110 V (ii) zero							
	(a)	correct derivation of $\frac{1}{f} = \left(\frac{n_2}{n_1} - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$	2						
22	(b)	$\frac{1}{12} = (n-1)\left(\frac{1}{10} + \frac{1}{15}\right) \qquad n = 1.5$	2	5					
	(c)	ii) diverging	1						
	(a)	Definition of electric dipole moment	1						
23	(b)	Correct derivation of the equation $\vec{E} = \frac{1}{4\pi\varepsilon_0} \times \frac{2pr}{(r^2 - a^2)^2} \hat{p}$	2	5					
	(c)	120 ⁰	1						