Wisgrow Math A - Plus

Session $66 \mid$ Co ordinates $1 \mid$ Worksheet 66

1) Draw coordinate axes
a) Mark the points $A(1,1), B(-1,1), C(-1,-1), D(1,-1)$
b) Complete the quadrilatearl $A B C D$ and suggest a suitable name to it
c) Find the perimeter of $A B C D$
d) Calculate the area of $A B C D$

a) Figure is given above
b) $A B C D$ is a square
c) One side is 2 unit. Perimeter is $4 \times 2=8$
d) Area $2 \times 2=4$ sq.unit
2) Draw coordinate axes
a) Mark the points $A(2,2), B(-2,2), C(-2,-2)$ and $D(2,-2)$
b) Suggest a suitable name to $A B C D$
c) Find the perimeter of $A B C D$
d) Calculate the area of $A B C D$

a) Figure is given above
b) Square
c) One side is 4 unit. Perimeter is $4 \times 4=16$
d) Area $4 \times 4=16$ sq.unit
a) Mark the points $A(1,0), B(0,-1), C(-1,0), D(0,-1)$
b) Suggest a suitable name to $A B C D$
c) Find the perimeter of $A B C D$
d) Calculate the area of $A B C D$

a) Figure is gfiven above
b) Square
c) One side is $\sqrt{2}$. Perimeter is $4 \sqrt{2}$
d) Area $\sqrt{2} \times \sqrt{2}=2$
3) The vertices of $A B C D$ are $A(3,2), B(-3,2), C(-3,-2), D(3,-2)$
a) Draw coordinate axes and mark the points
b) Find the length of sides?
c) Calculate perimeter and area of $A B C D$
d) What is the length of its diagonal

a) Diagram is given above
b) $A B=C D=6, A D=B C=4$
c) Perimeter $=2(6+4)=20$, Area $=6 \times 4=24$
d) Diagonal $=\sqrt{6^{2}+4^{2}}=\sqrt{52}$
4) Choose the correct answer
a) Which of the following is a point on x axis
(a) $(0,6)$
(b) $(-3,6)$
(c) $(-3,0)$
(d) $(1,1)$
b) What is the radius of the circle with centre $(0,0)$ and passing through $(1,1)$?
(a) $\sqrt{2}$
(b) $\sqrt{3}$
(c) $\sqrt{5}$
(d) 1
c) What is the distance between the points $(-7,3)$ and $(10,3)$
(a) 17
(b) 10
(c) 8
(d) 11
a) $(-3,0)$
b) $\sqrt{2}$
c) $\sqrt{17}$

Wisgrow Math A - Plus

Session 67 |Co ordinates $2 \mid$ Worksheet 67

1) Draw coordinate axes and mark $A(-2,-2)$
a) Write the coordinates of B which is 4 unit away parallel to y axis in the upward direction.
b) Write the coordinates of C which is 6 unit in the right of B parallel to x axis
c) Write the coordinates of D which is 4 unit above C on the line parallel to y axis
d) What is the distance between A and D ?

a) $B(-2,-2+4)=B(-2,2)$
b) $C(-2+6,2)=C(4,2)$
c) $D(4,2+4)=D(4,6)$
d) $A D=\sqrt{A P^{2}+P D^{2}}=\sqrt{6^{2}+8^{2}}=10$
2) $A(1,1), B(-3,1), C(-3,-4), D(1,-4)$ are the coordintes of the vertices of a rectangle.
a) What is the length of the side $A B$?
b) What is the length of the side $A D$?
c) Calcualte the perimetre and area of the rectangle.
a) $A B=\left|1-^{-} 3\right|=4$
b) $A D=\left|1-^{-} 4\right|=5$
c) Perimetre $=2(4+5)=18$

Area $=4 \times 5=20$
3) There is a circle with centre at the origin. The circle passes through $(5,0)$
a) What is the radius of the circle?
b) What are the coordinates of the points where the circle cut the axes?
c) Is $(3,4)$ a point on the circle? How can we realize it?

a) 5
b) $A(5,0), B(0,5) \cdot C(-5,0), D(0,-5)$
c) The distance from origin to the point $(3,4)$ is $=\sqrt{3^{2}+4^{2}}=5$, the radius of the circle. This point is on this circle.
4) The vertices of a right triangle are $A(1,1), B(4,1), C(1,5)$.
a) Name the vertex at which 90° angle is taken
b) What is the length of perpendicular sides?
c) What is the length of its hypotenuse?
d) What is the radius of its circumcircle?
a) $A(1,1)$
b) $A B=|4-1|=3, A C=|5-1|=4$
c) $B C=\sqrt{3^{2}+4^{2}}=5$
d) Circumradius $=\frac{5}{2}=2.5$

Wisgrow Math A - Plus

Session 68 | Coordinates $3 \mid$ Worksheet 68

1) In $\triangle A B C, A(1,3), B(7,3), C(4,11)$ are the vertices
a) What is the length of $A B$?
b) What is the altitude to $A B$
c) Calculate the area of $\triangle A B C$
a) $A B=|7-1|=6$
b) $h=|11-3|=8$
c) Area $=\frac{1}{2} \times 6 \times 8=24 \mathrm{sq.cm}$
2) $\triangle A B C$ is an equilateral triangle. Side $A B$ coincides x axis. If $A(-1,0), B(5,0)$ then
a) What is the length of $A B$?
b) What is the altitude of the triangle?
c) What are the coodinate pairs of C ?
a) $A B=\left|5-^{-} 1\right|=6$
b) Altitude $=3 \sqrt{3}$
c) $C(2,3 \sqrt{3}),(C(2,-3 \sqrt{3})$
3) Three vertices of $A B C D$ are $A(0,0), B(8,0) C(8,4)$
a) Write the coordiantes of D
b) Find the perimetre of the rectangle.
c) Calculate the area of the rectangle.
a) $D(0,4)$
b) $A B=C D=8, B C=A D=4$

Perimetre $=2(8+4)=24$
c) Area $=8 \times 4=32$ sq.unit
4) $A(4,0), B(0,4), C(-4,0), D(0,-4)$ are the vertices of a quadrilateral
a) Suggest a suitable name to $A B C D$
b) Find the length of a side?
c) Calcualte the area and perimetre

a) Square
b) $4 \sqrt{2}$
c) Area $(4 \sqrt{2})^{2}=32$ sq.unit, Perimetre $=4 \times 4 \sqrt{2}=16 \sqrt{2}$
5) In triangle $A B C, A(1,2), B(7,2)$ are two vertices.
a) What is the length of the side $A B$
b) In triangle $A B C, \angle A=90^{\circ}$. Write a pair of coordinates of C
c) What is the length of side $A C$?
d) Calculate the area of the triangle.
a) $A B=|7-1|=6$
b) $C(1,5)$ or any other pair with x coordinate 1
c) If $C(1,5), A C=|5-2|=3$
d) In the right triangle $A B C$ with $A(1,2), B(7,2)$ and $C(1,5)$ Area $=\frac{1}{2} \times 6 \times 3=9$ sq.unit

Wisgrow Math A - Plus

Session 69 | Coordinates $4 \mid$ Worksheet 69

1) $P(3,4)$ is a point in a circle with centre at the origin.
$Q(x, y)$ is another point on this circle , $\angle A O Q=30^{\circ}$ then

a) What is the radius of this circle?
b) What are the points where the circle cut the axes ?
c) Write the coordinates of Q
d) Write the coordinates of three more points on this circle.

a) $O P=\sqrt{O M^{2}+P M^{2}}=\sqrt{3^{2}+4^{2}}=5$
b) $(5,0),(0,5),(-5,0),(0,-5)$
c) $\triangle O N Q$ is a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle
$O Q=5, \therefore Q N=\frac{5}{2}, O N=\frac{5}{2} \sqrt{3}$
$Q\left(-\frac{5}{2} \sqrt{3}, \frac{5}{2}\right)$
d) $(-3,4),(-3,-4),(3,-4)$

a) What is the length of one side?
b) What is the altitude of this triangle?
c) Write the coordinates of C
d) Calculate the area of the triangle.

a) $A B=|7-1|=6$
b) $3 \sqrt{3}$
c) $C(1+3,1+3 \sqrt{3})$
d) Area $=\frac{1}{2} \times 6 \times 3 \sqrt{3}=9 \sqrt{3}$
2) $(2,1)$ is a point on the circle with centre at the origin.

a) What is the radius of the circle?
b) What are the points where the circle cut the axes?
c) Write the coordinates of 7 more points on this circle.

a) Radius $\sqrt{1^{2}+2^{2}}=\sqrt{5}$
b) $(\sqrt{5}, 0),(0, \sqrt{5}),(-\sqrt{5}, 0),(0,-\sqrt{5})$
c) $(-1,2),(-1,-2),(1,-2),(2,1),(-2,1),(-2,-1),(2,-1)$
3) In the figure $A B C D$ is a square. $O D=10, \angle A O D=30^{\circ}$.

a) Write the coordinates of A
b) What is the length of one side of the square?
c) Write the coordinates of the vertices of the square.
a) $O A=5 \sqrt{3}$ $A(5 \sqrt{3}, 0)$
b) $A D=5$, Side is 5 unit
c) $A(5 \sqrt{3}, 0), B(5+5 \sqrt{3}, 0), C(5+5 \sqrt{3}, 5), D(5 \sqrt{3}, 5)$

Wisgrow Math A - Plus

Session 70 | Coordinates 5 | Worksheet 70

1) Complete the following activities
a) Draw coordinate axes and mark the points $P\left(x_{1}, y_{1}\right), Q\left(x_{2}, y_{2}\right)$
b) Draw a line through P parallel to x axes, a line passing through Q parallel to yaxis
c) Mark the intersecting point as R
d) Calculate the length $P R$ and $Q R$
e) Prove that $P Q=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
a),b),c) see the figute

d) $P R=\left|x_{2}-x_{1}\right|, Q R=\left|y_{2}-y_{1}\right|$
e) $P Q^{2}=P R^{2}+Q R^{2}, P Q^{2}=\left|x_{2}-x_{1}\right|^{2}+\left|y_{2}-y_{1}\right|^{2}$

Note $|a|^{2}=a^{2}$
$P Q=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
2) Using the distance formula calculate the following.
a) The distance between $P(-6,7)$ and $Q(-1,-5)$
b) What is the distance from origin to $(-5,12)$
c) Find the distance between $P(-7,-3)$ and , $Q(-5,-11)$
a) $P Q=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$P Q=\sqrt{(-1--6)^{2}+(-5-7)^{2}}$
$P Q=\sqrt{5^{2}+(-12)^{2}}=\sqrt{169}=13$
b) $O(0,0), A(-5,12)$
$O A=\sqrt{(-5-0)^{2}+(12-0)^{2}}=\sqrt{25+144}=\sqrt{169}=13$
c) $P Q=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$P Q=\sqrt{(-5--7)^{2}+(-11--3)^{2}}=\sqrt{2^{2}+8^{2}}=\sqrt{68}$
3) The distance between $A(2, y)$ and $B(-4,3)$ is 10 unit
a) Form an equation using the diatance formula
b) What are the real numbers suitable for y ?
c) Write the coordinates of these points.
a) $A B=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$.
$10=\sqrt{(-4-2)^{2}+(3-y)^{2}}$
b) Squaring on both sides $10^{2}=(-6)^{2}+(3-y)^{2}$
$100-36=(3-y)^{2}$
$(3-y)^{2}=64,3-y= \pm \sqrt{64}= \pm 8$
If $3-y=8, y=-5$. If $3-y=-8, y=11$
c) $A(2,11), B(-4,3)$
$A(2,-5), B(-4,3)$
4) Consider the points $A(1,-1), B(5,2), C(9,5)$
a) Find the distance $A B, B C$ and $A C$
b) Prove that these points are on a line.
c) What is the mid point of $A C$?
a) $A B=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}, A B=\sqrt{(5-1)^{2}+\left(2-{ }^{-} 1\right)^{2}}=\sqrt{16+9}=5$ $B C=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}, B C=\sqrt{(9-5)^{2}+(5-2)^{2}}=\sqrt{16+9}=5$ $A C=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}, A C=\sqrt{(9-1)^{2}+\left(5-^{-} 1\right)^{2}}=\sqrt{64+36}=10$
b) $A B+B C=10, A C=10 \rightarrow A B+B C=A C$ A, B, C are on a line
c) $A B=5, B C=5$. Therefore B is the mid point of $A C$
5) Choose the correct answer
a) What is the perimeter of the triangle having vertices $(1,1),(4,1)$ and $(1,5)$
(a) 12
(b) 10
(c) 20
(d) 17
b) What is the radius of the circle with end points of the diameter are $(-1,7)$ and $(7,7)$
(a) 5
(b) 4
(c) 2
(d) 7
c) What is the altitude to the side $A B$ in the triangle with verices $A(1,1), B(6,1), C(3,7)$
(a) 6
(b) 4
(c) 2
(d) 6
a) 12
b) 4
c) 6

Wisgrow Math A - Plus

Session 71 | Coordinates $6 \mid$ Worksheet 71

1) The distance from a point P on x axis to $A(7,6)$ and $B(-3,4)$ are equal
a) What is the y coordinate of P
b) Form an equation using the distance formula.
c) Write the coordinates of P
d) Find the sides of $\triangle A B P$.
a) 0
b) Distance from $P(x, 0)$ to $A(7,6)$ is $=\sqrt{(x-7)^{2}+(0-6)^{2}}$

Distance from $P(x, 0)$ to $B(-3,4)$ is $=\sqrt{\left(x-^{-} 3\right)^{2}+(0-4)^{2}}$
c) Since $P A=P B$ then $\sqrt{(x-7)^{2}+(0-6)^{2}}=\sqrt{(x--3)^{2}+(0-4)^{2}}$ squaring on both sides ,
$(x-7)^{2}+36=(x+3)^{2}+16, x^{2}-14 x+49+36=x^{2}+6 x+9+16$
$x=3, P(3,0)$,
d) $P A=\sqrt{7-3)^{2}+(6-0)^{2}}=\sqrt{4^{2}+6^{2}}=\sqrt{52}$
$P B=\sqrt{52}, A B=\sqrt{\left.7-^{-} 3\right)^{2}+(6-4)^{2}}=\sqrt{104}$
Since $P A^{2}+P B^{2}=A B^{2}$, we can say ,this is an isosceles right angled triangle.
2) Consider the points $A(4,2), B(7,5), C(9,7)$
a) Find the distances $A B, B C$ and $A C$
b) Can we construct $\triangle A B C$? why?
c) Write the property of these points.
a) $A B=\sqrt{(7-4)^{2}+(5-2)^{2}}=\sqrt{3^{2}+3^{2}}=\sqrt{18}=3 \sqrt{2}$
$B C=\sqrt{(9-7)^{2}+(7-5)^{2}}=\sqrt{2^{2}+2^{2}}=\sqrt{8}=2 \sqrt{2}$
$A C=\sqrt{(9-4)^{2}+(7-2)^{2}}=\sqrt{5^{2}+5^{2}}=\sqrt{50}=5 \sqrt{2}$
b) The sum of two sides is not greater than the third side. Triangle cannot be constructed.
c) $A B+B C=A C$. So, the points are on a line.
3) Consider the points $A(0,1), B(1,4), C(4,3), D(3,0)$
a) Find the sides of $A B C D$
b) Find the length of diagonals.
c) Suggest a suitable name to this quadrilateral.
a) $A B=\sqrt{(1-0)^{2}+(4-1)^{2}}=\sqrt{10}$

$$
\begin{aligned}
& B C=\sqrt{(4-1)^{2}+(3-4)^{2}}=\sqrt{3^{2}+(-1)^{2}}=\sqrt{10} \\
& C D=\sqrt{(3-4)^{2}+(0-3)^{2}}=\sqrt{(-1)^{2}+(-3)^{2}}=\sqrt{10} \\
& A D=\sqrt{(0-3)^{2}+(1-0)^{2}}=\sqrt{(-3)^{2}+1^{2}}=\sqrt{10}
\end{aligned}
$$

b) $A C=\sqrt{(4-0)^{2}+(3-1)^{2}}=\sqrt{4^{2}+2^{2}}=\sqrt{20}$ $B D=\sqrt{(3-1)^{2}+(0-4)^{2}}=\sqrt{2^{2}+(-4)^{2}}=\sqrt{4+16}=\sqrt{20}$
c) Sides are equal. Diagonals are equal.$A B C D$ is a square .
a) Find the sides of $A B C D$
b) Find the length of the diagonals.
c) Suggest a suitable name to this quadrilateral.
a) $A B=\sqrt{(14-2)^{2}+(10--2)^{2}}=\sqrt{12^{2}+12^{2}}=12 \sqrt{2}$
$B C=\sqrt{(11-14)^{2}+(13-10)^{2}}=\sqrt{(-3)^{2}+3^{2}}=3 \sqrt{2}$
$C D=\sqrt{(-1-11)^{2}+(1-13)^{2}}=\sqrt{(-12)^{2}+(-12)^{2}}=12 \sqrt{2}$
$A D=\sqrt{\left(2-^{-} 1\right)^{2}+\left(-2-^{-} 1\right)^{2}}=\sqrt{3^{2}+(-3)^{2}}=3 \sqrt{2}$
b) $A C=\sqrt{(11-2)^{2}+\left(13-{ }^{-} 2\right)^{2}}=\sqrt{9^{2}+15^{2}}=\sqrt{306}$
$B D=\sqrt{\left(14-^{-} 1\right)^{2}+(10-1)^{2}}=\sqrt{15^{2}+9^{2}}=\sqrt{306}$
c) $A B=C D, B C=A D$ opposite Sides are equal.
$A C=B D$ Diagonals are equal. $A B C D$ is a rectangle.
5) Answer the following questions.
a) What is the diameter of the circumcircle of the triangle with vertices $(0,0),(1,0),(0,1)$
(a) 1
(b) 2
(c) $\sqrt{2}$
(d) $\sqrt{3}$
b) What is the altitude of the triangle with vertices $A(1,1) B(3,1)$ and $C(5,4)$
(a) 1
(b) 2
(c) 3
(d) $\sqrt{3}$
c) What is the fourth vertex of the parallelogram having a pair of opposite vertices are $(1,3),(4,4)$ and other vertex is $(3,3)$
(a) $(2,4)$
(b) $(4,2)$
(c) $(1,1)$
(d) $(2,2)$
a) $\sqrt{2}$
b) 3
c) $(2,4)$

[^0]
Wisgrow Math A - Plus

Session 72 | Coordinates $7 \mid$ Worksheet 72

1) Consider the points $A(2,3), B(3,4), C(5,6), D(4,5)$
a) Calculate the $A B$ and $C D$
b) Calcualte $A D$ and $B C$
c) Find the length of diagonals $A B C D$
d) Suggest a suitable name to $A B C D$.
a) $A B=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$.
$A B=\sqrt{(3-2)^{2}+(4-3)^{2}}=\sqrt{2}$.
$C D=\sqrt{(4-5)^{2}+(5-6)^{2}}=\sqrt{2}$
b) $A D=\sqrt{(4-2)^{2}+(5-3)^{2}}=\sqrt{8}=2 \sqrt{2}$
$B C=\sqrt{(5-3)^{2}+(6-4)^{2}}=\sqrt{8}=2 \sqrt{2}$
c) $A C=\sqrt{(5-2)^{2}+(6-3)^{2}}=\sqrt{18}=3 \sqrt{2}$ $B D=\sqrt{(4-3)^{2}+(5-4)^{2}}=\sqrt{2}$
d) $A B=C D, A D=B C$ opposite sides are equal
$A C \neq B D$ diagonals are not equal . $A B C D$ is a parallelogram .
2) $\triangle O A B$ is an equilateral triangle. If $O(0,0), A(0,6)$ then
a) Draw a rough diagram
b) Find the length of one side.
c) Write a pair of coordinates of B
d) How many equailateral triangles are there satisfying this condition.
a) Look at the picture

b) $O A=|6-0|=6$
c) Mid point of $O A$ is $P(0,3)$
$\triangle B A P$ is a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle $. P A=3, P B=3 \sqrt{3}$

Coordinates of B are $B(3 \sqrt{3}, 3)$
d) Two eqilateral triangles are possible. Triangle with vertices $O(0,0), B(0,6), C(3 \sqrt{3}, 3)$ and triangle with vertices $O(0,0), B(0,6), C(-3 \sqrt{3}, 3)$
a) Find the centre of its circumcircle.
b) What is the radius of the circumcircle.
a) Let $P(x, y)$ be the circumcentre. $P A=\sqrt{(x-8)^{2}+(y-6)^{2}}, \quad P B=$ $\sqrt{(x-8)^{2}+(y+2)^{2}}, P C=\sqrt{(x-2)^{2}+(y+2)^{2}}$
$P A=P B=P C$
$\therefore P A^{2}=P B^{2}=P C^{2}$
$(x-8)^{2}+(y-6)^{2}=(x-8)^{2}+(y+2)^{2}$
$x^{2}+y^{2}-16 x-12 y+100=x^{2}+y^{2}-16 x+4 y+68,16 y=32, y=2$
$P B^{2}=P C^{2},(x-8)^{2}+(y+2)^{2}=(x-2)^{2}+(y+2)^{2}, 12 x=60, x=5$ $P(5,2)$
b) Radius $=\sqrt{(5-8)^{2}+(2-6)^{2}}=5$

See the picture.

4) $A(-3,0), B(1,-3), C(4,1)$ are the vertices of a triangle.
a) Find the length of its sides
b) Prove that $\triangle A B C$ is an isosceles right triangle.
c) calculate the area of this triangle.
a) $A B=\sqrt{(1--3)^{2}+(-3-0)^{2}}=\sqrt{4^{2}+(-3)^{2}}=5$
$B C=\sqrt{(4-1)^{2}+(1+3)^{2}}=5$
$A C=5 \sqrt{2}$
b) $A B=B C$ This is an isosceles triangle. $A B^{2}+B C^{2}=25+25=50, A C^{2}=(5 \sqrt{2})^{2}=50$ $A B^{2}+B C^{2}=A C^{2}$
This is a right triangle . Isoscelest right traingle.
c) Area $=\frac{1}{2} \times 5 \times 5=\frac{25}{2}$

Wisgrow Math A - Plus

Session 73 | Coordinates 8 | Worksheet 73

1) $O A B C$ is a parallelogram. If $O(0,0), A(5,0), B(7,4)$ then
a) Draw a rough diagram
b) Write the coordinates of C
c) Calculate the area of the parallelogram.
a) Look at the picture

b) Side $O A$ is parallel to $B C$. Therefore the difference of x coordinates of O, A is same as the difference of x coordinates of B and C
Similarly in the case of y coordinates

$$
C(7-5,4)=C(2,4)
$$

c) Area $=5 \times 4=20$
2) In the trapezium $A B C D, A(8,5), B(-8,5), C(-5,-3), D(5,-3)$ then
a) Find the length of parallel sides
b) What is the distance between parallel sides ?
c) Calculate the area of the trapezium
a) y coodinates of A and B are equal. Line $A B$ is parallel to x axis. y coordinates of C and D are equal. $C D$ is parallel to x.
That is $A B$ is parallel to $C D . A B=\left|8-^{-} 8\right|=16, C D=\left|5-^{-} 5\right|=10$
b) Distance between $A B$ and $C D$ is $\left|5-^{-} 3\right|=8$
c) Area $=\frac{1}{2} \times 8(16+10)=4 \times 26=104$
3) Draw a line parallel to x axis passing through $(0,6)$.Draw another line parallel to y axis passing through $(8,0)$.
a) Find the coordinates of the intersecting point P
c) What is the distance from origin to P.
d) Write the coordinates of one more point on this line other than origin.
a) $P(8,6)$ Look at the picture

b) $O P=\sqrt{8^{2}+6^{2}}=10$
c) $Q(-8,-6)$
4) $A B C$ is an equilateral triangle. If $A(3,2), B(7,2)$ then
a) Find the length of its sides.
b) What is the altitude of the triangle?
c) Find the suitable coordinate pairs of C
d) Calculate the area of the triangle.
a) $A B=|7-3|=4$
b) Altitude $=2 \sqrt{3}$
c) $C(3+2,2+2 \sqrt{3})$ or $C(3+2,-(2 \sqrt{3}-2))$
$(5,2=2 \sqrt{3})$ or $(5,2-2 \sqrt{3}$
d) Area $=\frac{1}{2} \times 4 \times 2 \sqrt{3}=4 \sqrt{3}$
5) $P(2,-1), Q(3,4), R(-2,3), S(-3,-2)$ are the vertices of a quadrilateral.
a) Find the length of sides .
b) What is the length of its diagonals?
c) Suggest a suitable name to this quadrilateral.
d) Calculate the area .
a) $P Q=\sqrt{(3-2)^{2}+(4+1)^{2}}=\sqrt{26}$
$Q R=\sqrt{(-2-3)^{2}+(3-4)^{2}}=\sqrt{26}$
$R S=\sqrt{(-3+2)^{2}+(-2-3)^{2}}=\sqrt{26}$
$S P=\sqrt{(-3-2)^{2}+(-2+1)^{2}}=\sqrt{26}$
b) Diagonals $P R=\sqrt{(-2-2)^{2}+(3+1)^{2}}=4 \sqrt{2}$
$Q S=\sqrt{(-3-3)^{2}+(-2-4)^{2}}=6 \sqrt{2}$
c) $P Q=Q R=R S=S P$
$P R \neq Q S$.This is a rhombus
d) Area $=\frac{1}{2} \times d_{1} \times d_{2}=24$ sq.unit

Wisgrow Math A - Plus

Session 74 | Coordinates $9 \mid$ Worksheet 74

1) In the figure $A B C D$ is a parallelogram.lf $A(2,1), B(5,1), D(3,3)$ then

a) Write the coordinates of C
b) Find the length of side $A B$ and the distance between the parallel sides $A B$ and $C D$
c) Calculate the area of the parallelogram.
a) $A B$ is parallel to $C D$

The change in the x coordinates of A and B is same as the change in the x coordinates of C and D.
Change in the y coordinates of A and B is same as the change in the y coodrinates of C and D
$C(3+3,3)=C(6,3)$
b) $A B=|5-2|=3$

Distance between the parallel sides $=|3-1|=2$
c) Area $=3 \times 2=6$
2) In the parallelogram $A B C D$, if $A(0,1), B(5,3), D(0,7)$ then

a) Write the coordinates of C
b) What is the diatance between the sides $A D$ and $B C$
c) Calculate the area of the parallelogram
a) $A D$ is parallel to $B C$

The difference in the x coordinates of A and D is same as that of B and C. It is zero.
The difference in the y coordinates of A and D is same as that of B and C. It is 6 .
$C(5,3+6)=C(5,9)$
b) Distance $=|5-0|=5$
c) Area $=6 \times 5=30$
3) $A B C D E F$ is a regular hexagon. If $A(-4,0), B(4,0)$ then
a) Draw the diagram
b) Find the length of one side
c) Write the coordiantes of other vertices
d) Calcualte the area of the hexagon.
a) see the picture

b) $A B=\left|4-^{-} 4\right|=8$
c) $\triangle B P C$ is a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle.(Mark P in the figure. It is the foot of the perpen dicular from C to x axis)
$B C=8, B P=4, P C=4 \sqrt{3}$
$C(8,4 \sqrt{3}), F(-8,4 \sqrt{3}), D(4,8 \sqrt{3}), E(-4,8 \sqrt{3})$
4) $O A C B$ is a rectangle.

a) Draw coordinate axes with O as the origin
b) If a is the length and b is the breadth, write the coordiante of the vertices
c) If P is a point inside the rectangle then prove that $P A^{2}+P C^{2}=P B^{2}+P D^{2}$.
a,b) see the picture

c) $O P^{2}+C P^{2}=x^{2}+y^{2}+(x-a)^{2}+(y-b)^{2}$

$$
\begin{aligned}
& =2 x^{2}+2 y^{2}-2 a x-2 b y+a^{2}+b^{2} \\
& P A^{2}+P B^{2}=(x-a)^{2}+y^{2}+(x-a)^{2}+(y-b)^{2} \\
& =2 x^{2}+2 y^{2}-2 a x-2 b y+a^{2}+b^{2} \\
& O P^{2}+C P^{2}=P A^{2}+P B^{2}
\end{aligned}
$$

Evaluation

Mathematics X

Choose the correct answer. 1mark each

1) Which of the following is a point on x axis
(a) $(7,0)$
(b) $(0,7)$
(c) $(7,7)$
(d) $(0,-7)$

Answers
Ans : $(7,0)$
2) The line parallel to x axis passing through $(0,3)$ and parallel to y axis passing through $(3,0)$ intersect at P.What is the distance from origin to P ?
(a) $3 \sqrt{3}$
(b) $3 \sqrt{2}$
(c) 3
(d) $\sqrt{3}$

Answers

Ans : $3 \sqrt{2}$
3) What is the distance between the points $(-3,2)$ and $(3,2)$
(a) 4
(b) 7
(c) 6
(d) 5

Answers
Ans: 6

Questions from 4 to 5 carries 2 mark each

4) The vertices of a square are $(3,0),(0,3),(-3,0),(0,-3)$
a) What is the length of a side ?
b) Find the area of the square.
a) $3 \sqrt{2}$
b) Area $=(3 \sqrt{2})^{2}=9 \times 2=18$
5) $A(8,6)$ is a point on a circle with center at the origin.
a) What is the radius of this circle?
b) What are the points at which the circle cut the axes?

Answers

a) Radius $=\sqrt{8^{2}+6^{2}}=\sqrt{100}=10$
b) $(10,0),(0,10),(-10,0),(0,-10)$

Questions from 6 to 8 carries 3 each

6) Consider the points $A(7,6)$ and $B(-3,4)$
a) If $P(x, y)$ is a point on x axis then what is y ?
b) If $P A=P B$ then write the equation using the co-cordinates
c) Find the coordinates of the point P on x axis equidistant from A and B

Answers

a) $y=0$
b) $\sqrt{(x-7)^{2}+(0-6)^{2}}=\sqrt{\left(x-^{-} 3\right)^{2}+(0-4)^{2}}$
$(x-7)^{2}+36=(x+3)^{2}+16$
$x^{2}-14 x+49+36=x^{2}+6 x+9+16$
c) Simplifying $20 x=60, x=3$. The point on x axis is $P(3,0)$
7) In triangle $A B C, A(-3,2), B(5,2)$ and $C(2,7)$
a) What is the length of the side $A B$?
b) What is the altitude to $A B$?
c) Calculate the area of $\triangle A B C$

Answers

a) $A B=|5-(-3)|=8$
b) Altitude is $|7-2|=5$
c) Area $=\frac{1}{2} \times 8 \times 5=20$
8) Consider the points $A(1,-1), B(5,2), C(9,5)$
a) Find the distance $A B$ and $B C$
b) Find the distance $A C$
c) Are the points A, B, C on a line?

Answers
a) $A B=\sqrt{(5-1)^{2}+(2+1)^{2}}=5, B C=\sqrt{(9-5)^{2}+(5-2)^{2}}=5$
b) $A C=\sqrt{(9-1)^{2}+(5+1)^{2}}=10$
c) $A C=A B+B C$. The points are on a line
9) $A(0,1), B(1,4), C(4,3)$ and $D(3,0)$ are the vertices of a quadrilatearl
a) Find the length of its sides
b) Calculate the length of diagonals
c) Suggest a suitable name to this quadrilatearl

Answers
a) $A B=\sqrt{(1-0)^{2}+(4-1)^{2}}=\sqrt{10}$
$B C=\sqrt{(4-1)^{2}+(3-4)^{2}}=\sqrt{10}$
$C D=\sqrt{(3-4)^{2}+(0-3)^{2}}=\sqrt{10}$
$A D=\sqrt{(3-0)^{2}+(0-1)^{2}}=\sqrt{10}$
b) $A C=\sqrt{(4-0)^{2}+(3-1)^{2}}=\sqrt{25}=5$
$B D=\sqrt{(3-1)^{2}+(0-4)^{2}}=\sqrt{25}=5$
c) Sides are equal. Diagonals are equal. It is a square

Question 10 carries 5 marks

10) The trigonometric table given in the text book gives sin measure, cos measure and tan measure of angles from 0 to 90 degree.
It can be noted that sin measure increases from 0 to 1 as the angle increases from 0 to 90°.
cos measures decreases from 1 to 0 as the angle incresases ftom 0 to 90°.
If the sum of two angles is 90° then \sin of one angle is equal to \cos of other angle. $\sin 90^{\circ}=$ $\cos 0^{\circ}=1$ and $\sin 0^{\circ}=\cos 90^{\circ}=0$.
Also, the maximum value of \sin and \cos is 1
a) If $\sin A=\cos A$ then what is A ?
b) If $\sin X=\cos Y$ then what is $X+Y$?
c) $\sin +\sin B+\sin C=3$ then what is $\cos A+\cos B+\cos C ?$
d) What is the product $\cos 1^{\circ} \times \cos 2^{\circ} \times \cos 3^{\circ} \times \cdots \cos 90^{\circ}$?

Answers

a) 45°
b) 90°
c) 0
d) 0

[^0]: 'John P A, jpavpz@gmail.com, sjpuzzles@gmail.com ,9847307721

