Higher Secondary Education

Half Yearly Examination 2017-18
PHYSICS
HSE I
Maximum Score 60

$\begin{aligned} & \text { Qn } \\ & \text { No. } \end{aligned}$	Sub. Qn.	Scoring Indicators		Score	Total
Answer all questions from Qn No 1 to 4					
1		(i) Mechanics			1
2		240 metre			1
3		True			1
4		Mass of the body			1
Answer any five questions from Qn No 5 to 10					
5		Astronomical unit	Average distance of Sun from Earth	$1 / 2 \times 4$	2
		Light year	Distance travelled by light in one year		
		fermi	$10^{-15} \mathrm{~m}$		
		Angstrom	$10^{-10} \mathrm{~m}$		
6		Forming the equation $E=k m^{x} g^{y} h^{z}$ Remaining derivation leading to $E=m g h$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2
	7			1 1	2
8	(a) (b)	Figure 2 Law of conserv	of angular momentum	1 1	2
9	(a) (b)	$\begin{aligned} & Y=\frac{150 \times 10^{6}}{0.002}=7 \\ & 300 \times 10^{6} \mathrm{Nm} \end{aligned}$	$10^{10} \mathrm{Nm}^{-2}$	1 1	2
10	(a)	Definition of but	modulus	1	2

\begin{tabular}{|c|c|c|c|c|}
\hline \& (b) \& Air, water, steel \& 1 \& \\
\hline \multicolumn{5}{|c|}{Answer any five questions from Qn No 11 to 16} \\
\hline 11 \& \begin{tabular}{l}
(a) \\
(b)
\end{tabular} \& Zero \& 1
\[
(1 \times 2)
\] \& 3 \\
\hline 12 \& \begin{tabular}{l}
(a) \\
(b)
\end{tabular} \& \begin{tabular}{l}
 \\
Derivation of \(\mathrm{R}=\sqrt{A^{2}+B^{2}+2 A B \cos \theta}\)
\end{tabular} \& \[
1
\]
\[
2
\] \& 3 \\
\hline 13 \& \begin{tabular}{l}
(a) \\
(b)
\end{tabular} \& \begin{tabular}{l}
Definition of concurrent forces. Magnitude of resultant of \(F_{1}\) and \(F_{2}\)
\[
=\sqrt{3^{2}+4^{2}}=\sqrt{25}=5 \mathrm{~N}
\] \\
Magnitude of \(\mathrm{F}_{3}=5 \mathrm{~N}\)
\end{tabular} \& \[
\begin{aligned}
\& 1 \\
\& 1 \\
\& 1
\end{aligned}
\] \& 3 \\
\hline 14 \& (a)
(b) \& \[
\begin{aligned}
\& \text { W }=\mathrm{F} . \mathrm{d}=15+16+15=46 \mathrm{~J} \\
\& \begin{array}{c}
|\vec{F}|=\sqrt{3^{2}+4^{2}+5^{2}}=\sqrt{50} \mathrm{~N} \\
|\vec{d}|=\sqrt{5^{2}+4^{2}+3^{2}}=\sqrt{50} \mathrm{~m} \\
\cos \theta=\frac{\vec{F} \cdot \vec{d}}{F d}=\frac{46}{\sqrt{50} \times \sqrt{50}}=0.92 \\
\\
\quad \theta=23.07^{0}
\end{array}
\end{aligned}
\] \& \begin{tabular}{l}
1 \\
1 \\
1
\end{tabular} \& 3 \\
\hline 15 \& (a)

(b) \& \begin{tabular}{l}
$$
\begin{aligned}
& m g h=1 / 2 m v^{2}+1 / 2 I \omega^{2} \\
& v=\sqrt{\frac{2 g h}{1+\frac{K^{2}}{R^{2}}}}
\end{aligned}
$$

for a ring $K^{2}=R^{2}$

Velocity of ring $=\sqrt{g h}$

For a solid cylinder $\mathrm{K}^{2}=\frac{R^{2}}{2}$

Velocity of solid cylinder $\sqrt{\frac{4 g h}{3}}$

Solid cylinder

 \&

$1 / 2$

$1 / 2$

$1 / 2$

1/2

1
\end{tabular} \& 3

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline 16 \& \& Thin needle For a given force, pressure is inversely proportional to area of cross section
\[
1.013 \times 10^{5} \mathrm{~Pa}
\] \& \[
\begin{aligned}
\& 1 \\
\& 1 \\
\& 1
\end{aligned}
\] \& 3 \\
\hline \& \& Answer any four questions from Qn No 17 to 21 \& \& \\
\hline 17 \& \begin{tabular}{l}
(a) \\
(b)
\end{tabular} \& \begin{tabular}{l}
Statement of principle of homogeneity of dimmensions \\
Forming the equation \(T=k m^{x} l^{y} g^{z}\) \\
Remaining derivation leading to \(T=2 \pi \sqrt{\frac{l}{g}}\)
\end{tabular} \& 1
1
2 \& 4 \\
\hline 18 \& \begin{tabular}{l}
(a) \\
(b)
\end{tabular} \& \begin{tabular}{l}
True \\
Derivation of \(x=u t+\frac{1}{2} a t^{2}\)
\end{tabular} \& 1

1

2 \& 4

\hline 19 \& | (a) |
| :--- |
| (b) |
| (c) | \& | Statement of Newton's second law of motion |
| :--- |
| Derivation of $F=m a$ $\begin{aligned} & F=\frac{d p}{d t}=m \frac{d v}{d t} \\ & \text { If } \mathrm{F}=0, \mathrm{v}=\mathrm{a} \text { constant } \end{aligned}$ | \& 1

2
1 \& 4

\hline 20 \& (a)

(b) \& | Law of conservation of momentum $m_{1} v_{1 i}=m_{1} v_{1 f} \cos \theta_{1}+m_{2} v_{2 f} \cos \theta_{2} \mathrm{X}-\text { direction }$ $0=m_{1} v_{1 f} \sin \theta_{1}-m_{2} v_{2 f} \sin \theta_{2} \quad \mathrm{Y}-\text { direction }$ |
| :--- |
| Law of conservation of kinetic energy $\frac{1}{2} m_{1} v_{1 i}^{2}=\frac{1}{2} m_{1} v_{1 f}^{2}+\frac{1}{2} m_{2} v_{2 f}^{2}$ |
| Any concept leading to change in momentum in the first case is more than that in the second case. | \& \& 4

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline 21 \& \begin{tabular}{l}
(a) \\
(b)
\end{tabular} \& Derivation of \(g_{(h)}=g\left(1-\frac{2 h}{R}\right)\)
\[
\begin{aligned}
\& g=g_{(h)}\left(1-\frac{2 h}{R}\right) \\
\& h=R
\end{aligned}
\] \& 2
1
1 \& 4 \\
\hline \multicolumn{5}{|c|}{Answer any three questions from Qn No 22 to 25} \\
\hline 22 \& \begin{tabular}{l}
(a) \\
(b) \\
(c)
\end{tabular} \& \begin{tabular}{l}
Figure showing the parabolic path \\
Derivation of \(\mathrm{H}=\frac{v_{0}^{2} \sin ^{2} \theta}{2 g}\)
\[
\begin{aligned}
\& \mathrm{T}=\frac{2 v_{0} \sin \theta}{g} \\
\& \mathrm{~T}=2.86 \mathrm{~s}
\end{aligned}
\]
\end{tabular} \& 1
2
1
1 \& 5 \\
\hline 23 \& \begin{tabular}{l}
(a) \\
(b) \\
(c)
\end{tabular} \& \[
v_{\max }=\sqrt{R g\left(\frac{\mu_{s}+\tan \theta}{1-\mu_{s} \tan \theta}\right)}
\]
\[
\begin{aligned}
\& v=\sqrt{R g \tan \theta} \\
\& v=28.1 \mathrm{~m} / \mathrm{s}
\end{aligned}
\] \& 2

1
1
1
1 \& 5

\hline 24 \& | (a) |
| :--- |
| (b) |
| (c) | \& | Statement of parallel axis theorem |
| :--- |
| Derivation of $K E=\frac{1}{2} I \omega^{2}$ |
| Using perpendicular axis theorem $I_{\text {dia }}=\frac{M R^{2}}{4}$ |
| Using parallel axis theorem $I_{\text {tang }}=\frac{5}{4} M R^{2}$ | \& 1

2
1 \& 5

\hline 25 \& | (a) |
| :--- |
| (b) | \& | Gravitational force between planet and satellite. |
| :--- |
| Derivation of $\begin{aligned} & K E=\frac{G M m}{2(R+h)} \\ & P E=-\frac{G M m}{(R+h)} \end{aligned}$ | \& 1

1
1 \& 5

\hline
\end{tabular}

		$E=-\frac{G M m}{2(R+h)}$	1	
	(c)	Planet - Satellite is a bound system	1	

