Higher Secondary Education Half Yearly Examination 2017-18 PHYSICS

HSE I

Maximum Score 60

Qn No.	Sub. Qn.	Scoring Indicators		Score	Total
Answer all questions from Qn No 1 to 4					
	1 (i) Mechanics			1	
2		240 metre			1
3		True			1
	4	Mass of the body			1
		Answer any fi	ve questions from Qn No 5 to 10		
5		Astronomical / unit l Light year l fermi 2	Average distance of Sun from Earth Distance travelled by light in one year 10 ⁻¹⁵ m	½ x4	2
		Angstrom 2	10 ⁻¹⁰ m		
6 Forming the equation $E = km^x g^y h^z$ Remaining derivation leading to $E = mah$			1 1	2	
7 Derivation of $a = \frac{v^2}{2}$		1	2		
	(a)	Figure 2		1	
8	(b)	Law of conservation	of angular momentum	1	2
9	(a)	$Y = \frac{150 \times 10^6}{0.002} = 7.5 \times 1$	$0^{10} Nm^{-2}$	1	2
	(b)	$300 \times 10^6 Nm^{-2}$		1	
10	(a)	Definition of bulk mo	odulus	1	2

	(b)	Air, water, steel	1	
	<u> </u>	Answer any five questions from Qn No 11 to 16		
	(a)	Zero	1	
11	(b)	Ation of the second sec	(1x2)	3
12	(a)	Q B R P N	1	3
	(b)	Derivation of $R = \sqrt{A^2 + B^2} + 2AB \cos \theta$	-	
	(a) (b)	Definition of concurrent forces.	1	
13	(0)	$= \sqrt{3^2 + 4^2} = \sqrt{25} = 5 \text{ N}$ Magnitude of F ₂ = 5N	1 1	3
	(a)	W= F.d= 15+16+15 = 46 J	1	
14	(b)	$\begin{vmatrix} \vec{F} \\ = \sqrt{3^2 + 4^2 + 5^2} = \sqrt{50} \text{ N} \\ \vec{d} = \sqrt{5^2 + 4^2 + 3^2} = \sqrt{50} \text{ m} \\ \cos \theta = \frac{\vec{F} \cdot \vec{d}}{4} = \frac{46}{4} = 0.92$	1	3
		$rac{cos}{Fd} = \frac{1}{\sqrt{50} \times \sqrt{50}} = \frac{0.52}{0.52}$	1	
	(a)	$mgh = \frac{1}{2}mv^2 + \frac{1}{2}I\omega^2$	1/2	
		$v = \sqrt{\frac{2gh}{1 + \frac{K^2}{R^2}}}$	⅓	
15		for a ring $K^2 = R^2$ Velocity of ring= \sqrt{gh}	1∕2	3
	(b)	For a solid cylinder $K^2 = \frac{R^2}{2}$ Velocity of solid cylinder $\sqrt{\frac{4gh}{3}}$ Solid cylinder	½ 1	

	(a)	Thin needle	1	3
4.6		For a given force, pressure is inversely proportional to	1	
16		area of cross section		
	(b)	$1.013 \times 10^{5} Pa$	1	
		Answer any four questions from Qn No 17 to 21	-	
	(a)	Statement of principle of homogeneity of dimmensions	1	
17	(b)	Forming the equation $T = km^{x}l^{y}g^{z}$	1	4
17		Remaining derivation leading to $T = 2\pi \sqrt{\frac{l}{g}}$	2	
	(a)	True	1	
18	(b)	Derivation of $x = ut + \frac{1}{2}at^2$	1	4
	(a)	Statement of Newton's second law of motion	1	
19	(b)	Derivation of $F = ma$	2	4
	(c)	$F = \frac{dp}{dt} = m \frac{dv}{dt}$ If F = 0, v = a constant	1	
	(a)	Law of conservation of momentum $m_1v_{1i} = m_1v_{1f}\cos\theta_1 + m_2v_{2f}\cos\theta_2 X$ – direction	1	
		$0 = m_1 v_{1f} \sin \theta_1 - m_2 v_{2f} \sin \theta_2 \qquad \text{Y-direction}$	1	
20		Law of conservation of kinetic energy $\frac{1}{2}m_1v_{1i}^2 = \frac{1}{2}m_1v_{1f}^2 + \frac{1}{2}m_2v_{2f}^2$	1	4
	(b)	Any concept leading to change in momentum in the first case is more than that in the second case.	1	

	(a)	Derivation of $g_{(h)} = g\left(1 - \frac{2h}{R}\right)$	2	
21	(b)	$g = g_{(h)} \left(1 - \frac{2h}{R} \right)$	1	4
		h = R	1	
		Answer any three questions from Qn No 22 to 25		
	(a)	Figure showing the parabolic path	1	
22	(b)	Derivation of H = $\frac{v_0^2 \sin^2 \theta}{2g}$	2	
	(c)	$T = \frac{2v_0 \sin\theta}{2}$	1	5
		g T 2 00	1	
	(2)	1= 2.86 s	2	
	(a)		2	
		$\mathbf{f}\cos\theta \leftarrow \mathbf{N}\sin\theta$		
23		\mathbf{f} $\mathbf{f} \sin \theta$		5
	(b)	$v_{max} = \sqrt{Rg(\frac{\mu_s + tan\theta}{1 - \mu_s tan\theta})}$	1	
	(c)	$v = \sqrt{Rgtan\theta}$	1	
	(-)	v = 28.1 m/s	1	
	(a)	Statement of parallel axis theorem	1	
	(b)	Derivation of $KE = \frac{1}{2}I\omega^2$	2	
24	(c)	Using perpendicular axis theorem $I_{dia} = \frac{MR^2}{4}$	1	5
		Using parallel axis theorem $I_{tang} = \frac{5}{4}MR^2$	1	
	(a)	Gravitational force between planet and satellite.	1	
25	(b)	Derivation of $KE = \frac{GMm}{2(R+h)}$	1	-
		$PE = -\frac{GMm}{(R+h)}$	1	5

		$E = -\frac{GMm}{2(R+h)}$	1	
((c)	Planet – Satellite is a bound system	1	