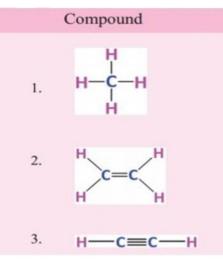


STD 10 – FIRST BELL 2.0– CHEMISTRY – CLASS – 38

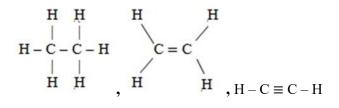

CHAPTER- 6

NOMENCLATURE OF ORGANIC COMPOUNDS AND ISOMERISM

• Organic chemistry is the branch of chemistry that deals with the carbon compounds.

Characteristics of Carbon compounds:

- The valency of carbon is four.
- Ability of catenation is high
- Single, double and triple bonds are possible between carbon atoms.


- 1. Single bond
- 2. Double bond
- 3. Triple bond.

Molecular formula of organic Compounds

Structure of the Compound	Molecular formula
$\begin{array}{ccc} H & H \\ & & \\ H - C - C - H \end{array}$	
$\begin{array}{ccc} H - C - C - H \\ & \\ H & H \end{array}$	C_2H_6
H C = C H	C_2H_4
$H - C \equiv C - H$	C2H2

- Hydrocarbons are compounds containing only carbon and hydrogen.
- They are hydrocarbons.
- There are compounds having single bond, double bond and triple bond between the carbon atoms.

Condensed formula

The structure of these compounds can also be written in condensed forms.

 $CH_3 - CH_3$, $CH_2 = CH_2$, $CH \equiv CH$

Complete the Table

Number of carbon	Structure of the compound	Condensed formula	Molecular formula
1	H H-C-H H	CH ₄	CH ₄
2	$ \begin{array}{cccc} H & H \\ & \\ H - C - C - H \\ & \\ H & H \end{array} $	CH ₃ -CH ₃	C ₂ H ₆
3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CH ₃ - CH ₂ -CH ₃	C ₃ H ₈
4		CH ₃ -CH ₂ -CH ₂ -CH ₃	

5	 	C ₅ H ₁₂
		0,3112

Answer

Number of carbon	Structure of the compound	Condensed formula	Molecular formula
1	H H-C-H	CII	CII
-	 H	CH ₄	CH ₄
2	H H H-C-C-H H H	CH ₃ - CH ₃	C_2H_6
3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CH ₃ -CH ₂ -CH ₃	C ₃ H ₈
4	H H H H H-C-C-C-C-H H H H H	CH ₃ -CH ₂ -CH ₂ -CH ₃	C ₄ H ₁₀
5	H H H H H H-C-C-C-C-C-H H H H H H	CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₃	C ₅ H ₁₂

HOME WORK

> What are the characteristics of Carbon compounds?

Prepared by:

Sakeena T HST PS Iringannur Hss Calicut