WANDOOR GANITHAM - S.S.L.C STUDY MATERIAL 2022

 STATISTICS - NOTE - CLASSES \& MEDIAN1 The table below shows the workers in a factory sorted according to their daily wages .

Daily wages (Rs)	Number of workers
$400-500$	7
$500-600$	8
$600-700$	10
$700-800$	9
$800-900$	5
$900-1000$	4

a) If the workers are arranged in increasing order of daily wage, the daily wage of of the worker at what position is taken as the median ?
b) If the workers are arranged in increasing order of daily wage, what is the daily wage of the worker at the $16^{\text {th }}$ position ?
c) Find the median daily wage ?

Answer.

Daily wages	Number of workers
Below 500	7
Below 600	15
Below 700	25
Below 800	34
Below 900	39
Below 1000	43

a) $\quad N=43$

Median $=$ Daily wage of the $22^{\text {nd }}$ worker $=x_{22}$
Median comes between 600 and 700 . (Median class: 600-700)
There are 10 workers in the median class

Divide the 100 rupees between 600 and 700 into 10 equal parts .

- Length of one sub division $=\frac{100}{10}=10=d$

Assume that each such subdivision contains one worker whose daily wage is the mid value of that subdivision .

b) $x_{16}=\frac{600+610}{2}=\frac{1210}{2}=605$
(The daily wages in the median class are in arithmetic sequence)
c) Median $=x_{22}$

$$
=x_{16}+6 d=605+(6 \times 10)=605+60=R s 665
$$

271 households in a neighbourhood are sorted according to their monthly income in the table below .

Monthly income (Rs)	Number of households
$3000-4000$	9
$4000-5000$	10
$5000-6000$	15
$6000-7000$	20
$7000-8000$	11
$8000-9000$	6

a) If the households are arranged in increasing order of monthly income, the monthly income of the household at what position is taken as the median ?
b) If the households are arranged in increasing order of monthly income, what is assumed to be the monthly income of the household at the $35^{\text {th }}$ position ?
c) Find the median of the monthly income ?

Answer.

Monthly income	Number of households
Below 4000	9
Below 5000	19
Below 6000	34
Below 7000	54
Below 8000	65
Below 9000	71

a) $\quad N=71$

Median $=$ Mark of the $36^{\text {th }}$ student $=x_{36}$
$>$ Median comes between 6000 and 7000 . (Median class : 6000-7000)
There are 20 households in the median class

Divide the 1000 rupees between 6000 and 7000 into 20 equal parts .
$>$ Length of one sub division $=\frac{1000}{20}=50=d$

- Assume that each such subdivision contains one household whose monthly income is the mid value of that subdivision .

b) $x_{35}=\frac{6000+6050}{2}=\frac{12050}{2}=6025$
(The monthly incomes in the median class are in arithmetic sequence)
c) Median $=X_{36}$

$$
=x_{35}+d=6025+50=\text { Rs } 6075
$$

3 The table below shows the children in a class sorted according to their marks in maths exam .

Marks	Number of students
$0-10$	5
$10-20$	11
$20-30$	10
$30-40$	12
$40-50$	7

a) If the students are arranged in increasing order of marks, the mark of the student at what position is taken as the median ?
b) If the students are arranged in increasing order of marks , what is assumed to be the mark of the student at the $17^{\text {th }}$ position ?
c) Find the median mark ?

Answer.

Marks	Number of students
Below 10	5
Below 20	16
Below 30	26
Below 40	38
Below 50	45

a) $\quad N=45$

- Median $=$ mark of the $\mathbf{2 3}^{\text {rd }}$ student $=\boldsymbol{x}_{23}$

Median comes between 20 and 30 . (Median class : 20 - 30)

- There are 10 students in the median class .

Divide the 10 marks between 20 and 30 into 10 equal parts .

Length of one sub division $=\frac{10}{10}=1=d$

Assume that each such subdivision contains one student whose mark is the mid value of that subdivision .

b) $x_{17}=\frac{20+21}{2}=\frac{41}{2}$
(The marks in the median class are in arithmetic sequence)
c) Median $=x_{23}$

$$
=x_{17}+6 d=\frac{41}{2}+(6 \times 1)=\frac{41}{2}+6=20.5+6=26.5
$$

4 The table shows some households sorted according to their usage of electricity .

Electricity usage (units)	Number of households
$80-90$	3
$90-100$	4
$100-110$	4
$110-120$	5
$120-130$	6
$130-140$	6

a) If the households are arranged in increasing order of usage of their electricity , half the sum of the usage of the households at what positions are taken as the median ?
b) If the households are arranged in increasing order of usage of their electricity what is assumed to be the usage of the household at the $12^{\text {th }}$ position ?
c) Find the median usage ?

Answer.

Electricity usage	Number of households
Below 90	3
Below 100	7
Below 110	11
Below 120	16
Below 130	22
Below 140	28

a) $\quad N=28$

Median $=$ Half the sum of the usages of the $14^{\text {th }}$ and $15^{\text {th }}$ households

$$
=\frac{x_{14}+x_{15}}{2}
$$

- Median comes between 110 and 120 . (Median class : 110-120)

There are 5 households in the median class .
Divide the 10 units between 110 and 120 into 5 equal parts .
Length of one sub division $=\frac{10}{5}=2=d$

- Assume that each such subdivision contains one house hold whose usage is the mid value of that subdivision .

b) $x_{12}=\frac{110+112}{2}=\frac{222}{2}=111$
(The usages of electricity in the median class are in arithmetic sequence)
c) $x_{14}=x_{12}+2 d=111+2 \times 2=111+4=115$

$$
x_{15}=x_{14}+d=115+2=117
$$

Median $=\frac{x_{14}+x_{15}}{2}=\frac{115+117}{2}=\frac{232}{2}=116$ units

5 The table below shows the workers in a factory sorted according to their daily wages.

Daily wages (Rs)	Number of workers
$350-500$	5
$500-650$	8
$650-800$	15
$800-950$	9
$950-1100$	7

a) If the workers are arranged in increasing order of daily wages, half the sum of the daily wage of the workers at what positions are taken as the median ?
b) If the workers are arranged in increasing order of daily wages , hat is assumed to be the daily wage of the worker at the $14^{\text {th }}$ position ?
c) Find the median daily wage?

Answer .

Daily wages	Number of workers
Below 500	5
Below 650	13
Below 800	28
Below 950	37
Below 1100	44

a) $\quad N=44$

Median $=$ Half the sum of the daily wages of the $22^{\text {nd }}$ and $23^{\text {rd }}$ workers

$$
=\frac{x_{22}+x_{23}}{2}
$$

Median comes between 650 and 800 . (Median class : 650-800)
There are 15 workers in the median class .
Divide the 150 rupees between 650 and 800 into 15 equal parts .
Length of one sub division $=\frac{150}{15}=10=d$
Assume that each such subdivision contains one worker whose daily wage is the mid value of that subdivision .

b) $x_{14}=\frac{650+660}{2}=\frac{1310}{2}=655$
(The daily wages in the median class are in arithmetic sequence)
c) $x_{22}=x_{14}+8 d=655+8 \times 10=655+80=735$,

$$
x_{23}=x_{22}+d=735+10=745
$$

Median $=\frac{x_{22}+x_{23}}{2}=\frac{735+745}{2}=\frac{1480}{2}=$ Rs 740

