GATE EC

www.nodia.co.in	www.nodia.co.in	www.nodia.co.in	www.nodia.co.in www.nodia.co.in	www.nodia.co.in	www.nodia.co.in	www.nodia.co.in www.nodia.co.in
WAWAHERIBERONIA	www.nodia.co.in	www.nodia.co.in	www.nodia.co.in www.nodia.co.in	www.nodia.co.in	www.nodia.co.in	www.nodia.co.in www.nodia.co.in
2014						
v zwy dia co.i						
www.nodia.co.in						

Q. No. 1 – 25 Carry One Mark Each

Consider the following statements regarding the complex Poynting vector \vec{P} for the **MCQ 1.1** power radiated by a point source in an infinite homogeneous and lossless medium. $\operatorname{Re}(\vec{P})$ denotes the real part of $\vec{P}.S$ denotes a spherical surface whose centre is at the point source, and \hat{n} denotes the unit surface normal on S. Which of the following statements is TRUE?

- (A) $\operatorname{Re}(\vec{P})$ remains constant at any radial distance from the source
- (B) $\operatorname{Re}(\vec{P})$ increases with increasing radial distance from the source
- (C) $\oiint_{S} \operatorname{Re}(\vec{P}) \cdot \hat{n} \, \mathrm{dS}$ remains constant at any radial distance from the source (D) $\oiint_{S} \operatorname{Re}(\vec{P}) \cdot \hat{n} \, \mathrm{dS}$ decreases with increasing radial distance form the source Power radiated from any source is constant.

SOL 1.1 Hence (C) is correct option.

MCQ 1.2 A transmission line of characteristic impedance 50 Ω is terminated by a 50 Ω load. When excited by a sinusoidal voltage source at 10 GHz, the phase difference between two points spaced 2 mm apart on the line is found to be $\frac{\pi}{4}$ radians. The phase velocity of the wave along the line is (B) $1.2 \times 10^8 \,\mathrm{m/s}$ (A) $0.8 \times 10^8 \,\mathrm{m/s}$

(C)
$$1.6 \times 10^8 \,\mathrm{m/s}$$
 (D) $3 \times 10^8 \,\mathrm{m/s}$

We have d = 2 mm and f = 10 GHz**SOL 1.2** Phase difference $=\frac{2\pi}{\lambda}d=\frac{\pi}{4};$ $=\lambda = 8d = 8 \times 2 \text{ mm} = 16 \text{ mm}$ or $v = f\lambda = 10 \times 10^9 \times 16 \times 10^{-3}$ $= 1.6 \times 10^8 \,\mathrm{m/sec}$

Hence (C) is correct option.

MCQ 1.3 An analog signal is band-limited to 4 kHz, sampled at the Nyquist rate and the samples are quantized into 4 levels. The quantized levels are assumed to be independent and equally probable. If we transmit two quantized samples per second, the information rate is _____ bits / second. (A) 1 (B) 2

(C) 3 (D) 4

SOL 1.3 Quantized 4 level require 2 bit representation i.e. for one sample 2 bit are required. Since 2 sample per second are transmitted we require 4 bit to be transmitted per second.

Hence (D) is correct option.

MCQ 1.4 The root locus plot for a system is given below. The open loop transfer function corresponding to this plot is given by

Hence (B) is correct option.

- **MCQ 1.5** A system is defined by its impulse response $h(n) = 2^n u(n-2)$. The system is (A) stable and causal (B) causal but not stable
 - (C) stable but not causal (D) unstable and non-causal

Brought to you by: Nodia and Company PUBLISHING FOR GATE

SOL 1.4

Page 3	GATE EC 2011	www.gatehelp.com
SOL 1.5	Function $h(n) = a^n u(n)$ stable if $ a < 1$ and Unstable if $ a \ge 1$ We have $h(n) = 2^n u(n-2)$; Here $ a = 2$ therefore $h(n)$ is unstable and since $h(n) = 0$ for n Therefore $h(n)$ will be causal. So $h(n)$ is causal and not stable. Hence (B) is correct option.	< 0
MCQ 1.6	If the unit step response of a network is $(1 - e^{-\alpha t})$, then its unit in (A) $\alpha e^{-\alpha t}$ (B) $\alpha^{-1} e^{-\alpha t}$ (C) $(1 - \alpha^{-1}) e^{\alpha t}$ (D) $(1 - \alpha) e^{-\alpha t}$	npulse response is
SOL 1.6	Hence (A) is correct option. Impulse response $= \frac{d}{dt}$ (step response) $= \frac{d}{dt}(1 - e^{-\alpha t})$ $= 0 + \alpha e^{-\alpha t} = \alpha e^{-\alpha t}$	
MCQ 1.7	The output Y in the circuit below is always '1' when $P \longrightarrow P \longrightarrow$	
	 (A) two or more of the inputs P, Q, R are '0' (B) two or more of the inputs P, Q, R are '1' (C) any odd number of the inputs P, Q, R is '0' (D) any odd number of the inputs P, Q, R is '1' 	
SOL 1.7	The given circuit is shown below: $P \longrightarrow \overline{PQ}$ \overline{PQ} \overline{PQ} \overline{PQ} \overline{PQ}	

$$Q \longrightarrow \overline{QR} \longrightarrow \overline{PR}$$

$$\overline{PQ} \overline{QR}) \overline{PR} = \overline{(\overline{PQ} + QR \ \overline{PR})}$$

$$= \overline{PQ + QR} + \overline{PR}$$

$$= PQ + QR + PR$$

If any two or more inputs are '1' then output y will be 1. Hence (B) is correct option.

MCQ 1.8 In the circuit shown below, capacitors C_1 and C_2 are very large and are shorts at the input frequency. v_i is a small signal input. The gain magnitude $\left|\frac{v_o}{v_i}\right|$ at 10 M rad/s is

Page 5GATE EC 2011www.gatehelp.comMCQ 1.10A Zener diode, when used in voltage stabilization circuits, is biased in
(A) reverse bias region below the breakdown voltage

- (B) reverse breakdown region
- (C) forward bias region
- (D) forward bias constant current mode
- **SOL 1.10** Zener diode operates in reverse breakdown region.

Hence (B) is correct option.

MCQ 1.11 The circuit shown below is driven by a sinusoidal input $v_i = v_p \cos(t/RC)$. The steady state output v_o

The given circuit is shown below

For parallel combination of R and C equivalent impedance is

$$Z_{\rm p} = \frac{R \cdot \frac{1}{j\omega C}}{R + \frac{1}{j\omega C}} = \frac{R}{1 + j\omega RC}$$

Transfer function can be written as

$$\frac{V_{ent}}{V_{to}} = \frac{Z_n}{Z_s + Z_p} = \frac{1 + \frac{1}{j\omega RC}}{R + \frac{1}{j\omega C} + \frac{R}{1 + j\omega RC}}$$

$$= \frac{j\omega RC}{j\omega RC + (1 + j\omega RC)^2}$$

$$= \frac{j}{j + (1 + j)^2} \qquad \text{Here } \omega = \frac{1}{RC}$$

$$\frac{V_{ent}}{V_{to}} = \frac{j}{(1 + j)^2 + j} = \frac{1}{3}$$
Thus $v_{out} = \left(\frac{V_p}{3}\right)\cos(t/RC)$
Hence (A) is correct option.

MCQ 1.12 Consider a closed surface S surrounding volume V. If \vec{r} is the position vector of a point inside S, with \vec{n} the unit normal on S, the value of the integral $\oint 5\vec{r}.\vec{n} \, dS$ is (A) $3V$
(C) $10V$

Sol 1.12 From Divergence theorem, we have
$$\iint \vec{\nabla} \cdot \vec{A} \, dv = \oint \mathbf{A} \int \vec{n} \, \vec{a} \, \mathbf{A} = \mathbf{C}$$
The position vector
$$\vec{r} = (\hat{u}_x x + \hat{u}_y y + \hat{u}_z 2) \mathbf{D}$$
Here, $\vec{A} = 5\vec{r}$, thus
$$\nabla \cdot \vec{A} = (\hat{u}_x \frac{\partial}{\partial x} + \hat{u}_y \frac{\partial}{\partial y} + \hat{u}_z \frac{\partial}{\partial z}) \cdot (\hat{u}_x x + \hat{u}_y y + \hat{u}_z z)$$

$$= \left(\frac{dx}{dx} + \frac{dy}{dy} + \frac{dz}{dz}\right) 5 = 3 \times 5 = 15$$
So, $\iint 5\vec{r} \cdot \vec{n} \, ds = \iiint 15 \, dv = 15 \, V$
Hence (D) is correct option

MCQ 1.13 The modes in a rectangular waveguide are denoted by $\frac{TK}{2d\omega}$ where m and n are the eigen numbers along the larger and smaller dimensions of the waveguide respectively. Which one of the following statements is TRUE?
(A) The TM₁₀ mode of the wave does not exist
(B) The TE₁₀₀ mode of the wave does not exist
(C) The TM₁₀₀ and TE₁₀₀ the modes both exist and have the same cut-off frequencies

(D) The TM_{10} and TM_{01} modes both exist and have the same cut-off frequencies

SOL 1.13 TM_{11} is the lowest order mode of all the TM_{mn} modes. Hence (A) is correct option.

MCQ 1.14 The solution of the differential equation $\frac{dy}{dx} = ky, y(0) = c$ is

	(A) $x = ce^{-ky}$	(B) $x = ke^{cy}$	
	(C) $y = ce^{kx}$	(D) $y = ce^{-kx}$	
SOL 1.14	Hence (C) is correct an	Swer	
	We have $\frac{dy}{dx} =$	ky	
	Integrating $\int \frac{dy}{y} =$	$\int k dx + A$	
	or $\ln y =$ Since $y(0) = c$ thus ln So, we get, $\ln y =$ or $\ln y =$ or $y =$	kx + A c = A $kx + \ln c$ $\ln e^{kx} + \ln c$ ce^{kx}	
MCQ 1.15	The Column-I lists the Match the attribute to Column-I	attributes and the Column-II lists the modulation system that best	s the modulation systems. meets it
	P. Power efficient tra	smission of signals	
	Q. Most bandwidth e	icient transmission of voice signa	ls
	R. Simplest receiver s	ructure	
	S. Bandwidth efficien	transmission of signals with Sign	nificant dc component
	Column-II	погр	
	1. Conventional AM		
	2. FM		
	3. VSB		
	4. SSB-SC		
	(A) P-4;Q-2;R-1;S-3	(B) $P-2;Q-4;R-2$	1;S-3
	(C) $P-3;Q-2;R-1;S-4$	(D) $P-2;Q-4;R-4$	3;S-1
SOL 1.15	In FM the amplitude in power.	s constant and power is efficient	transmitted. No variation
	There is most bandwi only one side band.	th efficient transmission in SSB-	SC. because we transmit
	Simple Diode in Non l	near region (Square law) is used	in conventional AM that
	In VSB dc. component	exists.	
	Hence (B) is correct of	tion.	

MCQ 1.16 The differential equation $100 \frac{d^2 y}{dt^2} - 20 \frac{dy}{dt} + y = x(t)$ describes a system with an in

put x(t) and an output y(t). The system, which is initially relaxed, is excited by a unit step input. The output y(t) can be represented by the waveform

SOL 1.17 We have
$$G(j\omega) = 5 + j\omega$$

Here $\sigma = 5$. Thus $G(j\omega)$ is a straight line parallel to $j\omega$ axis.
Hence (A) is correct option.

- MCQ 1.18The trigonometric Fourier series of an even function does not have the
(A) dc term(B) cosine terms(C) sine terms(D) odd harmonic terms
- SOL 1.18 For an even function Fourier series contains dc term and cosine term (even and odd harmonics).Hence (C) is correct option.
- **MCQ 1.19** When the output Y in the circuit below is '1', it implies that data has

- (A) changed from 0 to 1(B) changed from 1 to 0(C) changed in either direction(D) not changed
- **SOL 1.19**For the output to be high, both inputs to AND gate should be high.
The D-Flip Flop output is the same, after a delay.
Let initial input be 0;
then $\overline{Q} = 1$ (For 1st D-Flip Flop). This is given as input to 2nd FF.
Let the second input be 1. Now, considering after 1 time interval; The output of 1st
Flip Flop is 1 and 2nd FF is also 1. Thus Output = 1.
Hence (A) is correct option.
- **MCQ 1.20** The logic function implemented by the circuit below is (ground implies logic 0)

Page 9

- (A) F = AND(P,Q)(B) F = OR(P,Q)(C) F = X NOR(P,Q)(D) F = X OR(P,Q)
- **SOL 1.20** Hence (D) is correct option. $F = \overline{S_1} \overline{S_0} I_0 + \overline{S_1} S_0 I_1 + S_1 \overline{S_0} I_2 + S_1 S_0 I_3$ $I_0 = I_3 = 0$ $F = \overline{P}Q + P\overline{Q} = \text{XOR}(P, Q)$ (S₁ = P, S₀ = Q)
- **MCQ 1.21** The circuit below implements a filter between the input current ii and the output voltage v_o . Assume that the opamp is ideal. The filter implemented is a

- (A) low pass filter
- (C) band stop filter

- (B) band pass filter
- (D) high pass filter

The given circuit is shown below :

From diagram we can write $I_i = \frac{V_o}{R_1} + \frac{V_o}{sL_1}$

Transfer function

$$H(s) = \frac{V_o}{I_1} = \frac{sR_1L_1}{R_1 + sL_1}$$
$$H(j\omega) = \frac{j\omega R_1L_1}{R_1 + j\omega L_1}$$

or

- At $\omega = 0$ $H(j\omega) = 0$ At $\omega = \infty$ $H(j\omega) = R_1 = \text{constant. Hence HPF.}$ Hence (D) is correct option.
- MCQ 1.22 A silicon PN junction is forward biased with a constant current at room temperature. When the temperature is increased by 10°C, the forward bias voltage across the PN junction
 - (A) increases by 60 mV
 - (C) increases by 25 mV

- (B) decreases by 60 mV(D) decreases by 25 mV
- **SOL 1.22** For every 1°C increase in temperature, forward bias voltage across diode decreases by 2.5 mV. Thus for 10°C increase, there us 25 mV decreases. Hence (D) is correct option.
- **MCQ 1.23** In the circuit shown below, the Norton equivalent current in amperes with respect to the terminals P and Q is

SOL 1.23

23 Replacing P - Q by short circuit as shown below we have

Using current divider rule the current I_{sc} is

$$I_{SC} = \frac{25}{25 + 15 + j30} (16/0) = (6.4 - j4.8) \,\mathrm{A}$$

Hence (A) is correct option.

MCQ 1.24 In the circuit shown below, the value of R_L such that the power transferred to R_L is maximum is

Power transferred to R_L will be maximum when R_L is equal to the thevenin **SOL 1.24** resistance. We determine the venin resistance by killing all source as follows :

$$R_{TH} = \frac{10 \times 10}{10 + 10} + 10 = 15 \,\Omega$$

Hence (C) is correct option.

The value of the integral $\oint_c \frac{-3z+4}{(z^2+4z+5)} dz$ where c is the circle |z| = 1 is given by (A) 0 **MCQ 1.25** (A) 0(C) 4/5(D) 1

C R Integrals is $\oint_C \frac{-3z+4}{z^2+4z+5} dz$ where C is circle |z|=1**SOL 1.25** $\oint_{C} f(z) dz = 0$ if poles are outside C.

> $z^2 + 4z + 5 = 0$ Now

> > $(z+2)^2 + 1 = 0$

Thus

 $z_{1,2} = -2 \pm j \Rightarrow |z_{1,2}| > 1$ So poles are outside the unit circle. Hence (A) is correct option.

Q. No. 26 – 51 Carry Two Marks Each

MCQ 1.26 A current sheet $\overline{J} = 10\hat{u}_y \text{ A/m}$ lies on the dielectric interface x = 0 between two dielectric media with $\varepsilon_{r1} = 5$, $\mu_{r1} = 1$ in Region -1 (x < 0) and $\varepsilon_{r2} = 5$, $\mu_{r2} = 2$ in Region -2(x > 0). If the magnetic field in Region -1 at $x = 0^-$ is $\vec{H}_1 = 3\hat{u}_x + 30\hat{u}_y \text{ A/m}$ the magnetic field in Region -2 at $x = 0^+$ is

$$x>0 (\text{Region-2}) : \varepsilon_{r2}, \mu_{r2} = 2$$

$$J \qquad x = 0$$

$$x<0 (\text{Region-1}) : \varepsilon_{r1}, \mu_{r1} = 1$$
(A) $H_2 = 1.5 \hat{u}_x + 30 \hat{u}_y - 10 \hat{u}_z \text{ A/m}$
(B) $\vec{H}_2 = 1.5 \hat{u}_x + 30 \hat{u}_y - 10 \hat{u}_z \text{ A/m}$
(C) $\vec{H}_2 = 1.5 \hat{u}_x + 40 \hat{u}_y \text{ A/m}$
(D) $\vec{H}_2 = 3 \hat{u}_x + 30 \hat{u}_y + 10 \hat{u}_z \text{ A/m}$
(D) $\vec{H}_2 = 3 \hat{u}_x + 30 \hat{u}_y + 10 \hat{u}_z \text{ A/m}$
Sol 1.26 From boundary condition
$$Bn_1 = Bn_2$$

$$\mu_1 Hx_1 = \mu_2 Hx_2$$
or
$$Hx_2 = \frac{Hx_2}{2} = 2.5 1 \text{ C}$$
or
$$Hx_2 = 1.5 \hat{u}_x + A \hat{u}_y + B \hat{u}_z) \hat{x} + \frac{10 \hat{u}_y}{\hat{J}}$$
Then from Boundary condition
$$(3 \hat{u}_x + 30 \hat{u}_y) \hat{u}_x = (1.5 \hat{u}_x + A \hat{u}_y + B \hat{u}_z) \hat{x} + \frac{10 \hat{u}_y}{\hat{J}}$$

$$= -30 \hat{u}_z = -A \hat{u}_z + B \hat{u}_y + 10 \hat{u}_y$$
Comparing we get $A = 30$ and $B = -10$
So
$$Hz = 1.5 \hat{u}_x + 30 \hat{u}_y - 10 \hat{u}_z \text{ A/m}$$

Hence (A) is correct option.

- **MCQ 1.27** A transmission line of characteristic impedance 50 W is terminated in a load impedance Z_L . The VSWR of the line is measured as 5 and the first of the voltage maxima in the line is observed at a distance of $\frac{\lambda}{4}$ from the load. The value of Z_L is (A) 10 Ω (B) 250 Ω (C) $(19.23 + j46.15)\Omega$ (D) $(19.23 j46.15)\Omega$
- **SOL 1.27** Since voltage maxima is observed at a distance of $\lambda/4$ from the load and we know that the separation between one maxima and minima equals to $\lambda/4$ so voltage minima will be observed at the load, Therefore load can not be complex it must be pure resistive.

Now

$$\left|\Gamma\right| = \frac{s-1}{s+1}$$

also $R_L = \frac{R_0}{s}$ (since voltage maxima is formed at the load)

$$R_L = \frac{50}{5} = 10 \,\Omega$$

Hence (A) is correct option.

MCQ 1.28 x(t) is a stationary random process with auto-correlation function. $R_x(\tau) = \exp(\pi r^2)$. This process is passed through the system shown below. The power spectral density of the output process y(t) is

$$H(f) = j2\pi f$$

$$X(t) \longrightarrow Y(t)$$
(A) $(4\pi^2 f^2 + 1) \exp(-\pi f^2)$
(B) $(4\pi^2 f^2 - 1) \exp(-\pi f^2)$
(C) $(4\pi^2 f^2 + 1) \exp(-\pi f)$
(D) $(4\pi^2 f^2 - 1) \exp(-\pi f)$
SOL 1.28
Hence (A) is correct option.
We have
$$S_x(f) = F\{R_x(f)\} = F\{\exp(-\pi\tau^2)\}$$

$$= e^{-\pi/2}$$
The given circuit can be simplified as
$$F\{\exp(-\pi\tau^2)\}$$
The given circuit can be simplified as
$$F\{x(t), t) = F\{x(t)\} = F\{e_x(t)\}$$
Power spectral density of output is
$$S_y(f) = |G(f)|^2 S_x(f)$$

$$= |j2\pi f - 1|^2 e^{-\pi f^2}$$

$$= (\sqrt{(2\pi f)^2 + 1})^2 e^{-\pi f^2}$$

 $S_{u}(f) = (4\pi^{2}f^{2} + 1) e^{-\pi f^{2}}$

or

MCQ 1.29 The output of a 3-stage Johnson (twisted ring) counter is fed to a digital-to analog (D/A) converter as shown in the figure below. Assume all the states of the counter to be unset initially. The waveform which represents the D/A converter output v_o is

State Initially are shown below in table :

Q_2	Q_1	Q_0	
0	0	0	0
1	0	0	4
1	1	0	6
1	1	1	7
0	1	1	3
0	0	1	1
0	0	0	0
(\mathbf{A})	, ,•		

Hence (A) is correct option.

GATE EC 2011

 $D_A = \overline{Q}_A \overline{Q}_B + Q_A Q_B$ Hence (D) is correct option.

MCQ 1.31 In the circuit shown below, for the MOS transistors, $\mu_n C_{ox} = 100 \,\mu/\text{A/V}^2$ and the threshold voltage $V_T = 1 \,\text{V}$. The voltage Vx at the source of the upper transistor is

 $5 \text{ V} \bullet \downarrow W/L = 4$ $\bullet V_x$ W/L = 1

(A) 1 V

(B) 2 V

Brought to you by: <u>Nodia and Company</u> PUBLISHING FOR GATE Visit us at: www.nodia.co.in

(C) 3 V

(D) 3.67 V

For transistor M_2 ,

$$V_{GS} = V_G - V_S = V_x - 0 = V_x$$

 $V_{DS} = V_D - V_S = V_x - 0 = V_x$

Since $V_{GS} - V_T = V_x - 1 < V_{DS}$, thus M_2 is in saturation. By assuming M_1 to be in saturation we have

$$I_{DS(M_1)} = I_{DS(M_2)}$$

$$\frac{\mu_n C_{0x}}{2} (4) (5 - V_x - 1)^2 = \frac{\mu_n C_{0x}}{2} 1 (V_x - 1)^2$$

$$4 (4 - V_x)^2 = (V_x - 1)^2$$

$$2 (4 - V_x) = \pm (V_x - 1)$$

Taking positive root,

or

$$8 - 2V_x = V_x - 1$$
$$V_x = 3 V$$

At $V_x = 3$ V for $M_1, V_{GS} = 5 - 3 = 2$ V $\langle V_{DS}$. Thus our assumption is true and $V_x = 3 \mathrm{V}.$

Hence (C) is correct option.

An input $x(t) = \exp(-2t)u(t) + \delta(t-6)$ is applied to an LTI system with impulse MCQ 1.32 response h(t) = u(t). The output is (A) $[1 - \exp(-2t)]u(t) + u(t+6)$ (B) $[1 - \exp(-2t)]u(t) + u(t-6)$ (C) $0.5[1 - \exp(-2t)]u(t) + u(t+6)$ (D) $0.5[1 - \exp(-2t)]u(t) + u(t-6)$

SOL 1.32 Hence (D) is correct option. We have $x(t) = \exp(-2t)\mu(t) + s(t-6)$ and h(t) = u(t)Taking Laplace Transform we get

$$X(s) = \left(\frac{1}{s+2} + e^{-6s}\right)$$
 and $H(s) = \frac{1}{s}$

Now

$$\begin{split} Y(s) &= H(s) X(s) \\ &= \frac{1}{s} \Big[\frac{1}{s+2} + e^{-6s} \Big] = \frac{1}{s(s+2)} + \frac{e^{-6s}}{s} \end{split}$$

-6s

or

or
$$Y(s) = \frac{1}{2s} - \frac{1}{2(s+2)} + \frac{e^{-s}}{s}$$

Thus $y(t) = 0.5[1 - \exp(-2t)]u(t) + u(t-6)$

MCQ 1.33 For a BJT the common base current gain $\alpha = 0.98$ and the collector base junction reverse bias saturation current $I_{co} = 0.6 \,\mu\text{A}$. This BJT is connected in the common emitter mode and operated in the active region with a base drive current $I_B = 204$ A . The collector current I_c for this mode of operation is (A) 0.98 mA (B) 0.99 mA

Hence (D) is correct option. **SOL 1.33** We have $\alpha = 0.98$ $\beta = \frac{\alpha}{1 - \alpha} = 4.9$ Now

In active region, for common emitter amplifier,

$$I_C = \beta I_B + (1 + \beta) I_{CO}$$
 ...(1)
Substituting $I_{CO} = 0.6 \,\mu\text{A}$ and $I_B = 20 \,\mu\text{A}$ in above eq we have,
 $I_C = 1.01 \,\text{mA}$

- If $F(s) = L[f(t)] = \frac{2(s+1)}{s^2 + 4s + 7}$ then the initial and final values of f(t) are respectively **MCQ 1.34** (B) 2, 0(D) 2/7, 0(A) 0, 2 (C) 0, 2/7
- **SOL 1.34** Correct Option is ()
- **MCQ 1.35** In the circuit shown below, the current I is equal to

(A)
$$14/0^{\circ} A$$
 (B) $2.0/0^{\circ} A$
(C) $2.8/0^{\circ} A$ (D) $3.2/0^{\circ} A$

- **SOL 1.35**
- From star delta conversion we have

Thus

$$R_1 = \frac{R_a R_b}{R_a + R_b + R_c} = \frac{6.6}{6 + 6 + 6} = 2 \Omega$$

Here $R_1 = R_2 = R_3 = 2 \Omega$

Replacing in circuit we have the circuit shown below :

Now the total impedance of circuit is

$$Z = \frac{(2+j4)(2-j4)}{(2+j4)(2-j4)} + 2 = 7 \Omega$$
$$I = \frac{14/0^{\circ}}{7} = 2/0^{\circ}$$

Current

Hence (B) is correct option **ate**

MCQ 1.36 A numerical solution of the equation $f(x) + \sqrt{x-3} = 0$ can be obtained using Newton-Raphson method. If the starting value is x = 2 for the iteration, the value of x that is to be used in the next step is

(\mathbf{A})	0.306	(B)	0.739
(C)	1.694	(D)) 2.306

SOL 1.36 Hence (C) is correct option. We have $f(x) = x + \sqrt{x} - 3 = 0$ $f'(x) = 1 + \frac{1}{2\sqrt{x}}$

Substituting
$$x_0 = 2$$
 we get

$$f'(x_0) = 1.35355$$
 and $f(x_0) = 2 + \sqrt{2} - 3 = 0.414$

Newton Raphson Method

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

Substituting all values we have

$$x_1 = 2 - \frac{0.414}{1.3535} = 1.694$$

MCQ 1.37 The electric and magnetic fields for a TEM wave of frequency 14 GHz in a homogeneous medium of relative permittivity ε_r and relative permeability $\mu_r = 1$ are given by

	$ec{E}=E_{p}e^{j(\omega t-280\pi y)}\hat{u}_{z}\mathrm{V/m}$	$ec{H}=3e^{j(\omega t-280\pi y)}\hat{u}_x\mathrm{A/m}$
	Assuming the speed of light in of free space to be 120π , the re	free space to be 3×10^8 m/s, the intrinsic impedance elative permittivity ε_r of the medium and the electric
	field amplitude E_p are	
	(A) $\varepsilon_r = 3, E_p = 120\pi$	(B) $\varepsilon_r = 3, E_b = 360\pi$
	(C) $\varepsilon_r = 9, E_p = 360\pi$	(D) $\varepsilon_r = 9, E_p = 120\pi$
SOL 1.37	From the expressions of \vec{E} & . $\beta = 280 \ \pi$	\vec{H} , we can write,
	or $\frac{2\pi}{\lambda} = 280 \pi \Rightarrow \lambda$	$=\frac{1}{140}$
	Wave impedance, $Z_w = \frac{ \vec{E} }{ \vec{H} } =$	$\frac{E_p}{3} = \frac{120 \ \pi}{\sqrt{\varepsilon_r}}$
	again, $f = 14 \mathrm{GH}$	Z
	Now $\lambda = \frac{C}{\sqrt{\varepsilon_r f}}$	$=\frac{3\times10^8}{\sqrt{\varepsilon_r}14\times10^9}=\frac{3}{140\sqrt{\varepsilon_r}}$
	or $\frac{3}{140\sqrt{\varepsilon_r}} = \frac{1}{140}$	U
	or $\varepsilon_r = 9$	a t a
	Now $\frac{E_p}{3} = \frac{120\pi}{\sqrt{9}}$	$E_p = 120\pi$
	Hence (D) is correct option.	help
MCQ 1.38	A message signal $m(t) = \cos 2$	$00\pi t + 4\cos\pi t$ modulates the carrier $c(t) = \cos 2\pi f_c t$
	where $f_c = 1$ MHz to produce signal using an envelope dete	an AM signal. For demodulating the generated AM BC of the detector circuit
	should satisfy	the time constant nee of the detector circuit
	$(\mathrm{A})~0.5~\mathrm{ms} < \mathrm{RC} < 1~\mathrm{ms}$	(B) 1 $\mu { m s} << { m RC} < 0.5 ~{ m ms}$
	(C) RC $<< \mu s$	(D) RC >> $0.5 \mathrm{~ms}$
SOL 1.38	Highest frequency component Carrier frequency $f_c = 1$ MHz	in $m(t)$ is $f_m = 4000\pi/2\pi = 2000$ Hz
	For Envelope detector condition	DN
	$1/f_C << RC$ -	$<<1/f_m$
	$1 \ \mu s << RC <$	$<< 0.5\mathrm{ms}$
	Hence (B) is correct option.	
MCQ 1.39	The block diagram of a system below.	with one input it and two outputs y_1 and y_2 is given

A state space model of the above system in terms of the state vector x and the output vector $y = [y_1 \ y_2]^T$ is (A) $\dot{x} = [2]x + [1]u; y = [1 \ 2]x$ (B) $\underline{\dot{x}} = [-2]\underline{x} + [1]u; \quad \underline{y} = \begin{vmatrix} 1\\2 \end{vmatrix} \underline{x}$ (C) $\underline{\dot{x}} = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix} \underline{x} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u; \quad \underline{y} = \begin{bmatrix} 1 & 2 \end{bmatrix} \underline{x}$ (D) $\underline{\dot{x}} = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \underline{x} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u; \quad \underline{y} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \underline{x}$ Hence (B) is correct option. Here $x = y_1$ and $\dot{x} = \frac{dy_1}{dx}$ $\underline{y} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} x \\ 2x \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \underline{x}$ **SOL 1.39** $y_1 = \frac{1}{s+2}u$ Now $y_1(s+2) = u$ $\dot{y}_1 + 2y_1 = u$ $\dot{x} + 2x = u$ $\dot{x} = -2x + u$ $\dot{x} = [-2]x + [1]u$ Drawing SFG as shown below -2 $\rightarrow y_2$ Thus $\dot{x}_1 = [-2] x_1 + [1] u$ $y_1 = x_1; y_2 = 2x_1$

 $\underline{y} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \underline{x_1}$

Here $\underline{x_1} = \underline{x}$

MCQ 1.40 Two systems $H_1(Z)$ and $H_2(Z)$ are connected in cascade as shown below. The overall output y(n) is the same as the input x(n) with a one unit delay. The transfer function of the second system $H_2(Z)$ is

$$x(n) \longrightarrow H_{1}(z) = \frac{(1 - 0.4z^{-1})}{(1 - 0.6z^{-1})} \longrightarrow H_{2}(z) \longrightarrow y(n)$$
(A) $\frac{1 - 0.6z^{-1}}{z^{-1}(1 - 0.4z^{-1})}$
(B) $\frac{z^{-1}(1 - 0.6z^{-1})}{(1 - 0.4z^{-1})}$
(C) $\frac{z^{-1}(1 - 0.4z^{-1})}{(1 - 0.6z^{-1})}$
(D) $\frac{1 - 0.4z^{-1}}{z^{-1}(1 - 0.6z^{-1})}$
Hence (B) is correct option.

$$y(n) = x(n-1)$$
or
$$Y(z) = z^{-1}X(z)$$
or
$$\frac{Y(z)}{X(z)} = H(z) = z^{-1}$$
Now
$$H_1(z)H_2(z) = z^{-1}$$

$$\left(\frac{1-0.4z^{-1}}{1-0.6z^{-1}}\right)H_2(z) = z^{-1}$$

$$H_2(z) = \frac{z^{-1}(1-0.6z^{-1})}{(1-0.4z^{-1})}$$

MCQ 1.41 An 8085 assembly language program is given below. Assume that the carry flag is initially unset. The content of the accumulator after the execution of the program is

	MVI A, 07H RLC MOV B, A RLC RLC ADD B RRC	
	(A) 8 CH(C) 23 H	(B) 64 H(D) 15 H
SOL 1.41	Initially Carry Fla MVI A, 07 H RLC MVO B, A	ag, $C = 0$; $A = 0000\ 0111$; Rotate left without carry. $A = 0000\ 1110$; $B = A = 0000\ 1110$

SOL 1.40

Brought to yc	ou by: <u>Nodia and Comp</u> PUBLISHING F	oany 'OR GATE	Visit us at: www.nodia.co.in
	Emitter Current Now $I_C \approx I_E$ Applying KCL at c	$I_E = \frac{1}{4.3 \text{k}} = \frac{1}{4.3 \text{k}}$	4.3k = 1 mA
	In active region Emitter voltage	$egin{aligned} V_{BE ext{on}} &= 0.7 \ ext{V} \ V_E &= V_B - V_{BE ext{on}} = -5.7 \ ext{V} \ V_E - (-10) & -5.7 \end{aligned}$	-(-10) , ,
SOL 1.43	Hence (C) is correct	t option	
	(A) 10 ms (C) 50 ms	(B) 25 m (D) 100 r	ls ms
	$-5 \text{ V} \bullet \qquad $	$\int \frac{1}{2} 5 \mu F$	
	$\frac{5 \text{ V}}{0.5 \text{ m}}$	help	
MCQ 1.43	For the BJT Q_L in switch is initially c. Q_1 leaves the active	the circuit shown below, $\beta = $ losed. At time $t = 0$, the switch e region is	$=\infty, V_{BE \text{ on} = 0.7 \text{ V}, V_{CE \text{ sat}}} = 0.7 \text{ V}.$ The is opened. The time t at which
SOL 1.42	For 8 point DFT, x^{*} about $x[4], x[6] = 0$ Hence (B) is correct	$x^{*}[1] = x[7]; x^{*}[2] = x[6]; x^{*}[3] = x$ x[7] = 1 + j3 at option.	[5] and it is conjugate symmetric
MCQ 1.42	The first six point $5, 1 - j3, 0, 3 - j4, 0$ (A) $0, 1 - j3$ (C) $1 + j3, 5$	ants of the 8-point DFT of 0 and $3 + j4$ The last two po (B) 0,1 + (D) $1 - j$	a real valued sequence are ints of the DFT are respectively -j3 -3,5
	ADD B RRC Thus $A = 23$ H Hence (C) is correct	; $A = 00111000$; $+ \frac{00001110}{01000110}$; Rotate Right with out carry	$A = 0010 \ 0011$
	RLC RLC	; $A = 00011100$; $A = 00111000$	

Sir

with time, the capacitor charges and voltage across collector changes from 0 towards negative.

When saturation starts, $V_{CE} = 0.7 \Rightarrow V_C = +5 \text{ V}$ (across capacitor)

Thus from (1) we get,
$$+5 = \frac{0.5 \text{ mA}}{5 \mu \text{A}} T$$

or $T = \frac{5 \times 5 \times 10^{-6}}{0.5 \times 10^{-3}} = 50 \text{ m sec}$

MCQ 1.44 In the circuit shown below, the network N is described by the following Y matrix: $Y = \begin{bmatrix} 0.1 \, \mathrm{S} & -0.01 \, \mathrm{S} \\ 0.1 \, \mathrm{S} & 0.1 \, \mathrm{S} \end{bmatrix}$

$$\begin{array}{ll} (A) \ 1/90 & (B) \ -1/90 \\ (C) \ -1/99 & (D) \ -1/11 \end{array}$$

SOL 1.44 From given admittance matrix we get $I_1 = 0.1 V_1 - 0.01 V_2$ and ...(1) $I_2 = 0.01 V_1 + 0.1 V_2$...(2)Now, applying KVL in outer loop; $V_2 = -100I_2$

Brought to you by: Nodia and Company PUBLISHING FOR GATE Visit us at: www.nodia.co.in

or $I_2 = -0.01 V_2$ From eq (2) and eq (3) we have $-0.01 V_2 = 0.01 V_1 + 0.1 V_2$ $-0.11 V_2 = 0.01 V_1$ $\frac{V_2}{V_1} = \frac{-1}{11}$

Hence (D) is correct option.

MCQ 1.45 In the circuit shown below, the initial charge on the capacitor is 2.5 mC, with the voltage polarity as indicated. The switch is closed at time t = 0. The current i(t) at a time t after the switch is closed is

 $x + 4y + \lambda z = \mu$ has NO solution for values of λ and μ given by (B) $\lambda = 6, \mu \neq 20$ (A) $\lambda = 6, \mu = 20$ (C) $\lambda \neq 6, \mu = 20$ (D) $\lambda \neq 6, \mu = 20$ **SOL 1.46** Writing A: B we have $\begin{bmatrix} 1 & 1 & 1 & : & 6 \\ 1 & 4 & 6 & : & 20 \\ 1 & 4 & \lambda & : & \mu \end{bmatrix}$ Apply $R_3 \rightarrow R_3 - R_2$ $\begin{bmatrix} 1 & 1 & 1 & : & 6 \\ 1 & 4 & 6 & : & 20 \\ 0 & 0 & \lambda - 6 & : & \mu - 20 \end{bmatrix}$ For equation to have solution, rank of A and A:B must be same. Thus for no solution; $\lambda = 6, \mu \neq 20$ Hence (B) is correct option **MCQ 1.47** A fair dice is tossed two times. The probability that the second toss results in a value that is higher than the first toss is (B) 2/6(A) 2/36(C) 5/12**SOL 1.47** Total outcome are 36 out of which favorable outcomes are : (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 4), (2, 5), (2, 6);(3, 4), (3, 5), (3, 6), (4, 5), (4, 6), (5, 6) which are 15. $P(E) = \frac{\text{No. of favourable outcomes}}{\text{No. of total outcomes}} = \frac{15}{36} = \frac{5}{12}$ Thus

Hence (C) is correct option.

Common Data Questions: 48 & 49

The channel resistance of an N-channel JFET shown in the figure below is 600Ω when the full channel thickness (t_{ch}) of 10μ m is available for conduction. The builtin voltage of the gate P^+N junction (V_{bi}) is -1 V. When the gate to source voltage (V_{GS}) is 0 V, the channel is depleted by 1 μ m on each side due to the built in voltage and hence the thickness available for conduction is only 8 μ m

SOL 1.48 Full channel resistance is

$$r \frac{\rho \times L}{W \times a} = 600 \,\Omega \qquad \dots (1)$$

If
$$V_{GS}$$
 is applied, Channel resistance is
 $r' = \frac{\rho \times L}{W \times b}$
Pinch off voltage,
 $|V_p| = \frac{qN_D}{2\varepsilon}a^2$
 $(1 - \sqrt{\frac{V_{GS}}{V_p}})$
 $(...(2)$

If depletion on each side is $d = 1 \ \mu \text{m}$ at $V_{GS} = 0$. $V_j = \frac{qN_D}{2\varepsilon} d^2$

$$1=rac{qN_D}{2arepsilon}(1 imes10^{-6})^2 \; \Rightarrow \; rac{qN_D}{2arepsilon}=10^{12}$$

Now from equation (2), we have $|V| = 10^{12} \times (5 \times 10^{-6})$

or

$$ig| V_p ig| = 10^{12} imes (5 imes 10^{-6})^2$$

 $V_p = -25 \, \mathrm{V}$

or
$$V_p = -25 \text{ V}$$

At $V_{GS} = -3 \text{ V}$;
 $b = 5\left(1 - \sqrt{\frac{-3}{-25}}\right) \mu \text{m} = 3.26 \,\mu\text{m}$
 $r' = \frac{\rho L}{W \times b} = \frac{\rho L}{Wa} \times \frac{a}{b} = 600 \times \frac{5}{3.26} = 917 \,\Omega$

Hence (B) is correct option.

MCQ 1.49The channel resistance when
$$V_{GS} = 0$$
 V is
(A) 480 Ω
(C) 750 Ω (B) 600 Ω
(D) 1000 Ω

www.gatehelp.com

μm

SOL 1.49

At
$$V_{GS} = 0$$
 V, b = 4
since $2b = 8 \,\mu\text{m}$
Thus $r' = \frac{\rho L}{Wa} \times \frac{a}{b} = 600 \times \frac{5}{4} = 750 \,\Omega$

Hence (C) is correct option.

Common Data Questions: 50 & 51

The input-output transfer function of a plant $H(S) = \frac{100}{s(s+10)^2}$. The plant is placed in a unity negative feedback configuration as shown in the figure below.

 $= 26 \,\mathrm{dB}$

GATE EC 2011

MCQ 1.51 The signal flow graph that DOES NOT model the plant transfer function H(S) is

Linked Answer Questions: Q.52 to Q.55 Carry Two Marks Each

Statement for Linked Answer Questions: 52 & 53

MCQ 1.52	The bias current I_{DC} through the diodes	is
	(A) 1 mA	(B) 1.28 mA
	(C) 1.5 mA	(D) 2 mA

SOL 1.52 Hence (A) is correct option. The current flows in the circuit if all the diodes are forward biased. In forward biased there will be 0.7 V drop across each diode. Thus

$$I_{DC} = rac{12.7 - 4(0.7)}{9900} = 1 \,\mathrm{mA}$$

GATE EC 2011

MCQ 1.53The ac output voltage V_{ac} is
(A) $0.25 \cos(\omega t) \,\mathrm{mV}$ (B) $1 \cos(\omega t) \,\mathrm{mV}$ (C) $2 \cos(\omega t) \,\mathrm{mV}$ (D) $22 \cos(\omega t) \,\mathrm{mV}$

SOL 1.53 Hence (B) is correct option. The forward resistance of each diode is

$$r = \frac{V_T}{I_C} = \frac{25 \text{ mV}}{1 \text{ mA}} = 25 \Omega$$

Thus

$$V_{ac} = V_i \times \left(\frac{4(r)}{4(r) + 9900}\right)$$

= 100 mV cos(\omega t) 0.01 = 1 cos(\omega t) mV

Statement for Linked Answer Questions: 54 & 55

A four-phase and an eight-phase signal constellation are shown in the figure below.

- MCQ 1.54For the constraint that the minimum distance between pairs of signal points be d
for both constellations, the radii r_1 , and r_2 of the circles are
(A) $r_1 = 0.707d$, $r_2 = 2.782d$
(B) $r_1 = 0.707d$, $r_2 = 1.932d$
(C) $r_1 = 0.707d$, $r_2 = 1.545d$
(D) $r_1 = 0.707d$, $r_2 = 1.307d$
- **SOL 1.54** Four phase signal constellation is shown below

Now
$$d^2 = r_1^2 + r_1^2$$

 $d^2 = 2r_1^2$
 $d^2 = 2r_1^2$
 $d^2 = 2r_1^2$
 $d^2 = 2r_1^2$

Visit us at: www.nodia.co.in

$$\theta = \frac{2\pi}{M} = \frac{2\pi}{8} = \frac{\pi}{4}$$

Applying Cooine law we have

$$d^{2} = r_{2}^{2} + r_{2}^{2} - 2r_{2}^{2}\cos\frac{\pi}{4}$$
$$= 2r_{2}^{2} - 2r_{2}^{2} \ 1/\sqrt{2} = (2 - \sqrt{2}) r_{2}^{2}$$
$$r_{2} = \frac{d}{\sqrt{2 - \sqrt{2}}} = 1.3065 d$$

or

Hence (D) is correct option.

- MCQ 1.55 Assuming high SNR and that all signals are equally probable, the additional average transmitted signal energy required by the 8-PSK signal to achieve the same error probability as the 4-PSK signal is (A) 11.90 dB (B) 8.73 dB
- **SOL 1.55** Here P_e for 4 PSK and 8 PSK is same because P_e depends on d. Since P_e is same, d is same for 4 PSK and 8 PSK.

(D) 5.33 dB

$$\begin{array}{c|c} & & & \\ & & & \\ \hline & & \\ & & \\ \hline & & \\ &$$

(C) 6.79 dB

Additional Power SNR

$$= (SNR)_2 - (SNR)_1$$

$$= 10 \log\left(\frac{E_{S2}}{No}\right) - 10 \log\left(\frac{E_{S1}}{No}\right)$$

$$= 10 \log\left(\frac{E_{S2}}{E_{S1}}\right)$$

$$= 10 \log\left(\frac{r_2}{r_1}\right)^2 \Rightarrow 20 \log\left(\frac{r_2}{r_1}\right) = 20 \log\frac{1.3065d}{0.707d}$$

Additional SNR $= 5.33 \, dB$ Hence (D) is correct option.

Q. No. 56 – 60 Carry One Mark Each

MCQ 1.56 There are two candidates P and Q in an election. During the campaign, 40% of the voters promised to vote for P, and rest for Q. However, on the day of election 15% of the voters went back on their promise to vote for P and instead voted for Q. 25% of the voters went back on their promise to vote for Q and instead voted for P. Suppose, P lost by 2 votes, then what was the total number of voters?

(A) 100	(B) 110
(C) 90	(D) 95

Let us assume total voters are 100. Thus 40 voter (i.e. 40 %) promised to vote for **SOL 1.56** P and 60 (rest 60 %) promised to vote fore Q.

Now, 15% changed from P to	Q (15 % out of 40)
Changed voter from P to Q	$\frac{15}{100} \times 40 = 6$

Now Voter for P	40 - 6 = 34
Also, 25% changed form Q to	P (out of $60%$)
Changed voter from Q to P	$\frac{25}{100} \times 60 = 15$
Now Voter for P	34 + 15 = 49

Thus P P got 49 votes and Q got 51 votes, and P lost by 2 votes, which is given. Therefore 100 voter is true value.

Hence (A) is correct option.

MCQ 1.57 Choose the most appropriate word from the options given below to complete the following sentence:

> It was her view that the country's problems had been_____ by foreign technocrats, so that to invite them to come back would be counter-productive.

- (A) Identified (B) ascertained
- (C) Texacerbated (D) Analysed
- **SOL 1.57** The sentence implies that technocrats are counterproductive (negative). Only (C) can bring the same meaning. Hence (C) is correct option
- Choose the word from the options given below that is most nearly opposite in **MCQ 1.58** meaning to the given word: Frequency (A) periodicity (B) rarity
 - (C) gradualness (D) persistency

Page 33	GATE EC 2011	www.gatehelp.com				
SOL 1.58	Periodicity is almost similar to frequency. Gradualness means something happening with time. Persistency is endurance. Rarity is opposite to frequency. Hence (B) is correct option.					
MCQ 1.59	 Choose the most appropriate word from the options given h following sentence: Under ethical guidelines recently adopted by the Indian Medic genes are to be manipulated only to correct diseases for which treatments are unsatisfactory. (A) Similar (B) Most (C) Uncommon (D) Available 	below to complete the cal Association, human				
SOL 1.59	Available is appropriate because manipulation of genes will be done when other treatments are not useful. Hence (D) is correct option.					
MCQ 1.60	The question below consists of a pair of related words followords. Select the pair that best expresses the relation in the Gladiator : Arena (A) dancer : stage (B) commuter: train (C) teacher : classroom (C) teacher : clas	owed by four pairs of original pair: n oom				
SOL 1.60	A gladiator performs in an arena. Commutators use train but do not entertain like a gladiator. Similarly, teachers e performs on a stage. Hence (A) is correct option.	ns. Lawyers performs, educate. Only dancers				
	Q. No. 61 – 65 Carry Two Marks Each					

MCQ 1.61 The fuel consumed by a motorcycle during a journey while traveling at various speeds is indicated in the graph below.

The distances covered during four laps of the journey are listed in the table below

Page	34
I age	94

Lap	Distance (kilom- eters)	Average speed (kilometers per hour)
Р	15	15
Q	75	45
R	40	75
S	10	10

From the given data, we can conclude that the fuel consumed per kilometre was least during the lap

(A) P	(B) Q
(C) R	(D) S

SOL 1.61 Since fuel consumption/litre is asked and not total fuel consumed, only average speed is relevant. Maximum efficiency comes at 45 km/hr, So least fuel consumer per litre in lap Q

Hence (B) is correct option.

- MCQ 1.62 Three friends, R, S and T shared toffee from a bowl. R took 1/3rd of the toffees, but returned four to the bowl. S took 1/4th of what was left but returned three toffees to the bowl. T took half of the remainder but returned two back into the bowl. If the bowl had 17 toffees left, how many toffees-were originally there in the bowl?
 - (A) 38
 - (C) 48

(B) 31 (D) 41

SOL 1.62	Let total no	of toffees be x .	The following	table shows	the all calculations.
	1 00 00000 110	01 0011000 00 00.		000010 0110 010	

Friend	Bowl Status
$=\frac{x}{3}-4$	$=\frac{2x}{3}+4$
$=\frac{1}{4}\left[\frac{2x}{3}+4\right]-3$	$=\frac{2x}{3}+4-\frac{x}{6}+2$
$=\frac{x}{6} + 1 - 3 = \frac{x}{6} - \frac{x}{$	$-2 \qquad \qquad = \frac{x}{2} + 6$
$=\frac{1}{2}(\frac{x}{2}+6)-2$	$=\frac{x}{2}+6-\frac{x}{4}-1$
$=\frac{x}{4}+1$	$=\frac{x}{4}+5$
Now, $\frac{x}{4} + 5 = 17$	
or $\frac{x}{4} = 17 - 5 = 12$	
$r = 12 \times 4 = 48$	

Hence (C) is correct option.

MCQ 1.63 Given that $f(y) = \frac{|y|}{y}$, and q is any non-zero real number, the value of |f(q) - f(-q)| is (A) 0 (B) -1 (C) 1 (D) 2

SOL 1.63 Hence (D) is correct option.

Now

or

$$f(-y) = \frac{\left|-y\right|}{y} = -f(y)$$
$$\left|f(q) - f(-q)\right| = \left|2f(q)\right| = 2$$

 $f(y) = \frac{|y|}{|y|}$

MCQ 1.64 The sum of n terms of the series $4 + 44 + 444 + \dots$ is (A) $(4/81)[10^{n+1} - 9n - 1]$ (B) $(4/81)[10^{n-1} - 9n - 1]$ (D) $(4/81)[10^n - 9n - 10]$

SOL 1.64 Hence (C) is correct option

$$4 + 44 + 444 + \dots + 4(1 + 11 + 111 + \dots) = \frac{4}{9}(9 + 99 + 999 + \dots)$$

$$= \frac{4}{9}[(10 - 1) + (100 - 1) + \dots]$$

$$= \frac{4}{9}[10(1 + 10 + 10^{2} + 10^{3}) - n]$$

$$= \frac{4}{9}[10 \times \frac{10^{n} - 1}{10 - 1} - n]$$

$$= \frac{4}{81}[10^{n+1} - 10 - 9n]$$

- MCQ 1.65 The horse has played a little known but very important role in the field of medicine. Horses were injected with toxins of diseases until their blood built up immunities. Then a serum was made from their blood. Serums to fight with diphtheria and tetanus were developed this way.
 - It can be inferred from the passage that horses were
 - (A) given immunity to diseases
 - (B) generally quite immune to diseases
 - (C) given medicines to fight toxins
 - (D) given diphtheria and tetanus serums

SOL 1.65 Option B fits the sentence, as they built up immunities which helped humans

create	serums	from	their	blood.
Hence	(B) is c	correc	t opti	on.

Answer Sheet											
1.	(C)	13.	(A)	25.	(A)	37.	(D)	49.	(C)	61.	(B)
2.	(C)	14.	(C)	26.	(A)	38.	(B)	50.	(C)	62.	(C)
3.	(D)	15.	(B)	27.	(A)	39.	(B)	51.	(D)	63.	(D)
4.	(B)	16.	(A)	28.	(A)	40.	(B)	52.	(A)	64.	(C)
5.	(B)	17.	(A)	29.	(A)	41.	(C)	53.	(B)	65.	(B)
6.	(A)	18.	(C)	30.	(D)	42.	(B)	54.	(D)		
7.	(B)	19.	(A)	31.	(C)	43.	(C)	55.	(D)		
8.	(A)	20.	(D)	32.	(D)	44.	(D)	56.	(A)		
9.	(C)	21.	(D)	33.	(D)	45.	(A)	57.	(C)		
10.	(B)	22.	(D)	34.	(*)	46.	(B)	58.	(B)		
11.	(A)	23.	(A)	35.	(B)	47.	(C)	59.	(D)		
12.	(D)	24.	(C)	36.	(C)	48. G	(B)	60.	(A)		
	help										

Exclusive Series By Jhunjhunuwala

GATE CLOUD

By R. K. Kanodia & Ashish Murolia

GATE Cloud is an exclusive series of books which offers a completely solved question bank to GATE aspirants. The book of this series are featured as

- > Over 1300 Multiple Choice Questions with full & detailed explanations.
- > Questions are graded in the order of complexity from basic to advanced level.
- Contains all previous year GATE and IES exam questions from various branches
- > Each question is designed to GATE exam level.
- > Step by step methodology to solve problems

Available Title In this series

- **Signals and Systems (For EC and EE)**
- Network Analysis (For EC)-- Available in 2 Volumes
- Electric Circuit and Fields (For EE) -- Available in two volumes
- Electromagnetic (For EC)

Upcoming titles in this series

- Digital Electronics (Nov 2012)
- Control Systems (Dec 2012)
- Communication Systems (Jan 2012)

Exclusive Series By Jhunjhunuwala

GATE CLOUD

By R. K. Kanodia & Ashish Murolia

GATE Cloud is an exclusive series of books which offers a completely solved question bank to GATE aspirants. The book of this series are featured as

- > Over 1300 Multiple Choice Questions with full & detailed explanations.
- > Questions are graded in the order of complexity from basic to advanced level.
- Contains all previous year GATE and IES exam questions from various branches
- > Each question is designed to GATE exam level.
- > Step by step methodology to solve problems

Available Title In this series

- **Signals and Systems (For EC and EE)**
- Network Analysis (For EC)-- Available in 2 Volumes
- Electric Circuit and Fields (For EE) -- Available in two volumes
- Electromagnetic (For EC)

Upcoming titles in this series

- Digital Electronics (Nov 2012)
- Control Systems (Dec 2012)
- Communication Systems (Jan 2012)