GATE EC

2011

Q. No. 1-25 Carry One Mark Each

MCQ 1.1 Consider the following statements regarding the complex Poynting vector \vec{P} for the power radiated by a point source in an infinite homogeneous and lossless medium. $\operatorname{Re}(\vec{P})$ denotes the real part of $\vec{P} . S$ denotes a spherical surface whose centre is at the point source, and \hat{n} denotes the unit surface normal on S . Which of the following statements is TRUE?
(A) $\operatorname{Re}(\vec{P})$ remains constant at any radial distance from the source
(B) $\operatorname{Re}(\vec{P})$ increases with increasing radial distance from the source
(C) $\oiint_{\mathrm{S}} \operatorname{Re}(\vec{P}) \cdot \hat{n} \mathrm{dS}$ remains constant at any radial distance from the source
(D) $\oiint_{\mathrm{S}} \operatorname{Re}(\vec{P}) \cdot \hat{n} \mathrm{dS}$ decreases with increasing radial distance form the source

SOL 1.1 Power radiated from any source is constant.
Hence (C) is correct option..
MCQ 1.2 A transmission line of characteristic impedance 50Ω is terminated by a 50Ω load. When excited by a sinusoidal voltage source at 10 GHz , the phase difference between two points spaced 2 mm apart on the line is found to be $\frac{\pi}{4}$ radians. The phase velocity of the wave along the line is
(A) $0.8 \times 10^{8} \mathrm{~m} / \mathrm{s}$
(B) $1.2 \times 10^{8} \mathrm{~m} / \mathrm{s}$
(C) $1.6 \times 10^{8} \mathrm{~m} / \mathrm{s}$
(D) $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$

SOL 1.2 We have $d=2 \mathrm{~mm}$ and $f=10 \mathrm{GHz}$
or

$$
\begin{aligned}
\text { Phase difference } & =\frac{2 \pi}{\lambda} d=\frac{\pi}{4} \\
& =\lambda=8 d=8 \times 2 \mathrm{~mm}=16 \mathrm{~mm} \\
v & =\lambda=10 \times 10^{9} \times 16 \times 10^{-3} \\
& =1.6 \times 10^{8} \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

Hence (C) is correct option.
MCQ 1.3 An analog signal is band-limited to 4 kHz , sampled at the Nyquist rate and
the samples are quantized into 4 levels. The quantized levels are assumed to be independent and equally probable. If we transmit two quantized samples per second, the information rate is \qquad bits / second.
(A) 1
(B) 2
(C) 3
(D) 4

SOL 1.3 Quantized 4 level require 2 bit representation i.e. for one sample 2 bit are required. Since 2 sample per second are transmitted we require 4 bit to be transmitted per second.
Hence (D) is correct option.
MCQ 1.4 The root locus plot for a system is given below. The open loop transfer function corresponding to this plot is given by

(A) $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})=k \frac{s(s+1)}{(s+2)(s+3)}$
(B) $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})=k \frac{(s+1)}{s(s+2)(s+3)^{2}}$
(C) $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})=k \frac{1}{s(s-1)(s+2)(s+3)}$
(D) $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})=k \frac{(s+1)}{s(s+2)(s+3)}$

SOL 1.4 For given plot root locus exists from -3 to ∞, So there must be odd number of poles and zeros. There is a double pole at $s=-3$

$$
\begin{aligned}
\text { Now poles } & =0,-2,-3,-3 \\
\text { zeros } & =-1
\end{aligned}
$$

Thus transfer function $\quad G(s) H(s)=\frac{k(s+1)}{s(s+2)(s+3)^{2}}$
Hence (B) is correct option.
MCQ 1.5 A system is defined by its impulse response $h(n)=2^{n} u(n-2)$. The system is
(A) stable and causal
(B) causal but not stable
(C) stable but not causal
(D) unstable and non-causal

SOL 1.5 Function $h(n)=a^{n} u(n)$ stable if $|a|<1$ and Unstable if $|a| \geqslant 1$
We have $\quad h(n)=2^{n} u(n-2)$;
Here $|a|=2$ therefore $h(n)$ is unstable and since $h(n)=0$ for $n<0$
Therefore $h(n)$ will be causal. So $h(n)$ is causal and not stable.
Hence (B) is correct option.
MCQ 1.6 If the unit step response of a network is $\left(1-e^{-\alpha t}\right)$, then its unit impulse response is
(A) $\alpha e^{-\alpha t}$
(B) $\alpha^{-1} e^{-\alpha t}$
(C) $\left(1-\alpha^{-1}\right) e^{\alpha t}$
(D) $(1-\alpha) e^{-\alpha t}$

SOL 1.6 Hence (A) is correct option.

$$
\begin{aligned}
\text { Impulse response } & =\frac{d}{d t}(\text { step response }) \\
& =\frac{d}{d t}\left(1-e^{-\alpha t}\right) \\
& =0+\alpha e^{-\alpha t}=\alpha e^{-\alpha t}
\end{aligned}
$$

MCQ 1.7 The output Y in the circuit below is always ' 1 ' when

(A) two or more of the inputs $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ are ' 0 '
(B) two or more of the inputs $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ are ' 1 '
(C) any odd number of the inputs $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ is ' 0 '
(D) any odd number of the inputs $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ is ' 1 '

SOL 1.7 The given circuit is shown below:

$$
\begin{aligned}
\overline{(\overline{P Q} \overline{Q R}) \overline{P R}} & =\overline{(\overline{P Q+Q R} \overline{P R})} \\
& =\overline{\overline{P Q+Q R}+\overline{\overline{P R}}} \\
& =P Q+Q R+P R
\end{aligned}
$$

If any two or more inputs are ' 1 ' then output y will be 1 .
Hence (B) is correct option.
MCQ 1.8 In the circuit shown below, capacitors C_{1} and C_{2} are very large and are shorts at the input frequency. v_{i} is a small signal input. The gain magnitude $\left|\frac{v_{o}}{v_{i}}\right|$ at 10 M $\mathrm{rad} / \mathrm{s}$ is

(A) maximum
(B) minimum
(C) unity

(D) zero

SOL 1.8 For the parallel RLC circuit resonance frequency is,

$$
\omega_{r}=\frac{1}{\sqrt{L C}}=\frac{1}{\sqrt{10 \times 10^{-6} \times 1 \times 10^{-9}}=10 \mathrm{M} \mathrm{rad} / \mathrm{s} .0}
$$

Thus given frequency is resonance frequency and parallel RLC circuit has maximum impedance at resonance frequency
Gain of the amplifier is $g_{m} \times\left(Z_{C} \| R_{L}\right)$ where Z_{C} is impedance of parallel RLC circuit.
At $\omega=\omega_{r}, Z_{C}=R=2 \mathrm{k} \Omega=Z_{C \max }$.
Hence at this frequency $\left(\omega_{r}\right)$, gain is
Gain $\left.\right|_{\omega=\omega_{r}}=g_{m}\left(Z_{C} \| R_{L}\right)=g_{m}(2 \mathrm{k} \| 2 \mathrm{k})=g_{m} \times 10^{3}$ which is maximum. Therefore gain is maximum at $\omega_{r}=10 \mathrm{Mrad} / \mathrm{sec}$.
Hence (A) is correct option.
MCQ 1.9 Drift current in the semiconductors depends upon
(A) only the electric field
(B) only the carrier concentration gradient
(C) both the electric field and the carrier concentration
(D) both the electric field and the carrier concentration gradient

SOL 1.9 Hence (C) is correct option.
Drift current $\quad I_{d}=q n \mu_{n} E$
It depends upon Electric field E and carrier concentration n

MCQ 1.10 A Zener diode, when used in voltage stabilization circuits, is biased in (A) reverse bias region below the breakdown voltage
(B) reverse breakdown region
(C) forward bias region
(D) forward bias constant current mode

SOL 1.10 Zener diode operates in reverse breakdown region.

Hence (B) is correct option.
MCQ 1.11 The circuit shown below is driven by a sinusoidal input $v_{i}=v_{p} \cos (t / R C)$. The steady state output v_{o}

(A) $\left(v_{p} / 3\right) \cos (t / R C)$
(B) $\left(v_{p} / 3\right) \sin (t / R C)$
(C) $\left(v_{p} / 2\right) \cos (t / R C)$
(D) $\left(v_{p} / 2\right) \sin (t / R C)$

SOL 1.11 The given circuit is shown below

For parallel combination of R and C equivalent impedance is

$$
Z_{\mathrm{p}}=\frac{R \cdot \frac{1}{j \omega C}}{R+\frac{1}{j \omega C}}=\frac{R}{1+j \omega R C}
$$

Transfer function can be written as

$$
\begin{array}{rlr}
\frac{V_{\text {out }}}{V_{\text {in }}} & =\frac{Z_{\mathrm{p}}}{Z_{\mathrm{s}}+Z_{\mathrm{p}}}=\frac{\frac{R}{1+j \omega R C}}{R+\frac{1}{j \omega C}+\frac{R}{1+j \omega R C}} \\
& =\frac{j \omega R C}{j \omega R C+(1+j \omega R C)^{2}} \\
& =\frac{j}{j+(1+j)^{2}} \\
\text { Thus } \quad V_{\text {out }} & =\frac{j}{(1+j)^{2}+j}=\frac{1}{3} \\
v_{\text {out }} & =\left(\frac{V_{p}}{3}\right) \cos (t / R C) & \text { Here } \omega=\frac{1}{R C} \\
\end{array}
$$

Hence (A) is correct option.
MCQ 1.12 Consider a closed surface S surrounding volume V. If \vec{r} is the position vector of a point inside S , with \hat{n} the unit normal on S , the value of the integral $\oiint 5 \hat{r} . \vec{n} \mathrm{dS}$ is
(A) 3 V
(B) 5 V
(C) 10 V
(D) 15 V

SOL 1.12 From Divergence theorem, we have
The position vector
(A) $x=c e^{-k y}$
(B) $x=k e^{c y}$
(C) $y=c e^{k x}$
(D) $y=c e^{-k x}$

SOL 1.14 Hence (C) is correct answer
We have $\quad \frac{d y}{d x}=k y$
Integrating $\quad \int \frac{d y}{y}=\int k d x+A$
or

$$
\ln y=k x+A
$$

Since $y(0)=c$ thus $\ln c=A$
So, we get,
$\ln y=k x+\ln c$
$\ln y=\ln e^{k x}+\ln c$
$y=c e^{k x}$
MCQ 1.15 The Column-I lists the attributes and the Column-II lists the modulation systems. Match the attribute to the modulation system that best meets it Column-I
P. Power efficient transmission of signals
Q. Most bandwidth efficient transmission of voice signals
R. Simplest receiver structure
S. Bandwidth efficient transmission ofsignals with Significant dc component Column-II

1. Conventional AM
2. FM
3. VSB
4. SSB-SC
(A) $\mathrm{P}-4 ; \mathrm{Q}-2 ; \mathrm{R}-1 ; \mathrm{S}-3$
(B) P-2;Q-4;R-1;S-3
(C) P-3;Q-2;R-1;S-4
(D) P-2;Q-4;R-3;S-1

SOL 1.15 In FM the amplitude is constant and power is efficient transmitted. No variation in power.
There is most bandwidth efficient transmission in SSB- SC. because we transmit only one side band.
Simple Diode in Non linear region (Square law) is used in conventional AM that is simplest receiver structure.
In VSB dc. component exists.
Hence (B) is correct option.
MCQ 1.16 The differential equation $100 \frac{d^{2} y}{d t^{2}}-20 \frac{d y}{d t}+y=x(t)$ describes a system with an in
put $x(t)$ and an output $y(t)$. The system, which is initially relaxed, is excited by a unit step input. The output $\mathrm{y}(\mathrm{t})$ can be represented by the waveform
(A)

(B)

(C)

(D)

SOL 1.16 Hence (A) is correct option.
We have

Applying Laplace transform we get

$$
100 s^{2} Y(s)-20 s Y(s)+Y(s)=X(s)
$$

or

$$
\begin{aligned}
H(s) & =\frac{Y(s)}{X(s)}=\frac{1}{100 s^{2}-20 s+1} \\
& =\frac{1 / 100}{s^{2}-(1 / 5) s+1 / 100}=\frac{A}{s^{2}+2 \xi \omega_{n} s+\omega^{2}}
\end{aligned}
$$

Here $\omega_{n}=1 / 10$ and $2 \xi \omega_{n}=-1 / 5$ giving $\xi=-1$
Roots are $s=1 / 10,1 / 10$ which lie on Right side of s plane thus unstable.
MCQ 1.17 For the transfer function $G(j \omega)=5+j \omega$, the corresponding Nyquist plot for positive frequency has the form
(A)

(B)

(C)

(D)

SOL 1.17 We have $\quad G(j \omega)=5+j \omega$
Here $\sigma=5$. Thus $G(j \omega)$ is a straight line parallel to $j \omega$ axis. Hence (A) is correct option.

MCQ 1.18 The trigonometric Fourier series of an even function does not have the
(A) dc term
(B) cosine terms
(C) sine terms
(D) odd harmonic terms

SOL 1.18 For an even function Fourier series contains dc term and cosine term (even and odd harmonics).
Hence (C) is correct option.
MCQ 1.19 When the output Y in the circuit below is ' 1 ', it implies that data has

(A) changed from 0 to 1
(B) changed from 1 to 0
(C) changed in either direction
(D) not changed

SOL 1.19 For the output to be high, both inputs to AND gate should be high.
The D-Flip Flop output is the same, after a delay.
Let initial input be 0 ;
(Consider Option A)
then $\bar{Q}=1$ (For $1^{\text {st }}$ D-Flip Flop). This is given as input to $2^{\text {nd }} \mathrm{FF}$.
Let the second input be 1 . Now, considering after 1 time interval; The output of $1^{\text {st }}$
Flip Flop is 1 and $2^{\text {nd }} \mathrm{FF}$ is also 1 . Thus Output $=1$.
Hence (A) is correct option.
MCQ 1.20 The logic function implemented by the circuit below is (ground implies logic 0)

(A) $F=\operatorname{AND}(P, Q)$
(B) $F=\operatorname{OR}(P, Q)$
(C) $F=X \operatorname{NOR}(P, Q)$
(D) $F=X \operatorname{OR}(P, Q)$

SOL 1.20 Hence (D) is correct option.

$$
\begin{aligned}
& F=\overline{S_{1}} \overline{S_{0}} I_{0}+\overline{S_{1}} S_{0} I_{1}+S_{1} \overline{S_{0}} I_{2}+S_{1} S_{0} I_{3} \\
& I_{0}=I_{3}=0 \\
& F=\bar{P} Q+P \bar{Q}=\operatorname{XOR}(P, Q)
\end{aligned}
$$

$$
\left(S_{1}=P, S_{0}=Q\right)
$$

MCQ 1.21 The circuit below implements a filter between the input current ii and the output voltage v_{o}. Assume that the opamp is ideal. The filter implemented is a

(A) low pass filter
(B) band pass filter
(C) band stop filter
(D) high pass filter

SOL 1.21 The given circuit is shown below :

From diagram we can write

$$
I_{i}=\frac{V_{o}}{R_{1}}+\frac{V_{o}}{s L_{1}}
$$

Transfer function
or

$$
\begin{aligned}
H(s) & =\frac{V_{o}}{I_{1}}=\frac{s R_{1} L_{1}}{R_{1}+s L_{1}} \\
H(j \omega) & =\frac{j \omega R_{1} L_{1}}{R_{1}+j \omega L_{1}}
\end{aligned}
$$

At $\omega=0$
$H(j \omega)=0$
At $\omega=\infty$
$H(j \omega)=R_{1}=$ constant. Hence HPF.
Hence (D) is correct option.
MCQ 1.22 A silicon PN junction is forward biased with a constant current at room temperature. When the temperature is increased by $10^{\circ} \mathrm{C}$, the forward bias voltage across the PN junction
(A) increases by 60 mV
(B) decreases by 60 mV
(C) increases by 25 mV

- (D) decreases by 25 mV

SOL 1.22 For every $1^{\circ} \mathrm{C}$ increase in temperature, forward bias voltage across diode decreases by 2.5 mV . Thus for $10^{\circ} \mathrm{C}$ increase, there us 25 mV decreases.
Hence (D) is correct option.
In the circuit shown below, the Norton equivalent current in amperes with respect to the terminals P and Q is

(A) $6.4-j 4.8$
(B) $6.56-j 7.87$
(C) $10+j 0$
(D) $16+j 0$

SOL 1.23 Replacing $P-Q$ by short circuit as shown below we have

Using current divider rule the current $I_{s c}$ is

$$
I_{S C}=\frac{25}{25+15+j 30}(16 / 0)=(6.4-j 4.8) \mathrm{A}
$$

Hence (A) is correct option.
MCQ 1.24 In the circuit shown below, the value of R_{L} such that the power transferred to R_{L} is maximum is

(A) 5Ω
(B) 10Ω
(C) 15Ω
(D) 20Ω

SOL 1.24 Power transferred to R_{L} will be maximum when R_{L} is equal to the thevenin resistance. We determine thevenin resistance by killing all source as follows :

$$
R_{T H}=\frac{10 \times 10}{10+10}+10=15 \Omega
$$

Hence (C) is correct option.
MCQ 1.25 The value of the integral $\oint_{c} \frac{-3 z+4}{\left(z^{2}+4 z+5\right)} \mathrm{dz}$ where c is the circle $|z|=1$ is given by
(A) 0
(B) $1 / 10$
(C) $4 / 5$
(D) 1
sOL 1.25 $C R$ Integrals is $\oint_{C} \frac{-3 z+4}{z^{2}+4 z+5} d z$ where C is circle $|z|=1$

$$
\oint_{C} f(z) d z=0 \text { if poles are outside C. }
$$

Now

$$
z^{2}+4 z+5=0
$$

$$
(z+2)^{2}+1=0
$$

Thus

$$
z_{1,2}=-2 \pm j \Rightarrow\left|z_{1,2}\right|>1
$$

So poles are outside the unit circle.
Hence (A) is correct option.

Q. No. 26 - 51 Carry Two Marks Each

MCQ 1.26 A current sheet $\bar{J}=10 \hat{u}_{y} \mathrm{~A} / \mathrm{m}$ lies on the dielectric interface $x=0$ between two dielectric media with $\varepsilon_{r 1}=5, \mu_{r 1}=1$ in Region $-1(x<0)$ and $\varepsilon_{r 2}=5, \mu_{r 2}=2$ in Region $-2(x>0)$. If the magnetic field in Region -1 at $x=0^{-}$is $\vec{H}_{1}=3 \hat{u}_{x}+30 \hat{u}_{y} \mathrm{~A} / \mathrm{m}$ the magnetic field in Region-2 at $x=0^{+}$is
$\mathrm{x}>0\left(\right.$ Region-2) $: \varepsilon_{r 2}, \mu_{r 2}=2$

(A) $H_{2}=1.5 \hat{u}_{x}+30 \hat{u}_{y}-10 \hat{u}_{z} \mathrm{~A} / \mathrm{m}$
(B) $\vec{H}_{2}=1.5 \hat{u}_{x}+30 \hat{u}_{y}-10 \hat{u}_{z} \mathrm{~A} / \mathrm{m}$
(C) $\vec{H}_{2}=1.5 \hat{u}_{x}+40 \hat{u}_{y} \mathrm{~A} / \mathrm{m}$
(D) $\vec{H}_{2}=3 \hat{u}_{x}+30 \hat{u}_{y}+10 \hat{u}_{z} \mathrm{~A} / \mathrm{m}$

SOL 1.26 From boundary condition

$$
\begin{aligned}
B n_{1} & =B n_{2} \\
\mu_{1} H x_{1} & =\mu_{2} H x_{2} \\
H x_{2} & =\frac{H x_{1}}{2}=1.5 \\
H x_{2} & =1.5 \hat{u}_{x} \\
\bar{H}_{z} & =1.5 \hat{u}_{x}+A \hat{u}_{y}+B u_{z}
\end{aligned}
$$

or
or $\quad H x_{2}=1.5 \hat{u}_{x}$
Further if
Then from Boundary condition

$$
\begin{aligned}
\left(3 \hat{u}_{x}+30 \hat{u}_{y}\right) \hat{u}_{x} & =\left(1.5 \hat{u}_{x}+A \hat{u}_{y}+B \hat{u}_{z}\right) \hat{x}+\frac{10 \hat{u}_{y}}{\vec{J}} \\
& =-30 \hat{u}_{z}=-A \hat{u}_{z}+B \hat{u}_{y}+10 \hat{u}_{y}
\end{aligned}
$$

Comparing we get $A=30$ and $B=-10$
So $\quad \bar{H}_{z}=1.5 \hat{u}_{x}+30 \hat{u}_{y}-10 \hat{u}_{z} \mathrm{~A} / \mathrm{m}$
Hence (A) is correct option.
MCQ 1.27 A transmission line of characteristic impedance 50 W is terminated in a load impedance Z_{L}. The VSWR of the line is measured as 5 and the first of the voltage maxima in the line is observed at a distance of $\frac{\lambda}{4}$ from the load. The value of Z_{L} is
(A) 10Ω
(B) 250Ω
(C) $(19.23+j 46.15) \Omega$
(D) $(19.23-j 46.15) \Omega$

SOL 1.27 Since voltage maxima is observed at a distance of $\lambda / 4$ from the load and we know that the separation between one maxima and minima equals to $\lambda / 4$ so voltage minima will be observed at the load, Therefore load can not be complex it must be pure resistive.
Now

$$
|\Gamma|=\frac{s-1}{s+1}
$$

also $R_{L}=\frac{R_{0}}{s}$ (since voltage maxima is formed at the load)

$$
R_{L}=\frac{50}{5}=10 \Omega
$$

Hence (A) is correct option.
MCQ $1.28 x(t)$ is a stationary random process with auto-correlation function. $R_{x}(\tau)=\exp \left(\pi r^{2}\right)$. This process is passed through the system shown below. The power spectral density of the output process $y(t)$ is

(A) $\left(4 \pi^{2} f^{2}+1\right) \exp \left(-\pi f^{2}\right)$
(B) $\left(4 \pi^{2} f^{2}-1\right) \exp \left(-\pi f^{2}\right)$
(C) $\left(4 \pi^{2} f^{2}+1\right) \exp (-\pi f)$
(D) $\left(4 \pi^{2} f^{2}-1\right) \exp (-\pi f)$

SOL 1.28 Hence (A) is correct option.
We have

$$
\begin{aligned}
S_{x}(f) & =F\left\{R_{x}(\tau)\right\}=F\left\{\exp \left(-\pi \tau^{2}\right)\right\} \\
& =e^{-\pi f^{2}}
\end{aligned}
$$

The given circuit can be simplified as P_{\square}
$X(t) \longrightarrow \begin{gathered}G(f) \\ j 2 \pi f-1\end{gathered} Y(t)$
Power spectral density of output is

$$
\begin{aligned}
& \qquad \begin{aligned}
S_{y}(f) & =|G(f)|^{2} S_{x}(f) \\
& =|j 2 \pi f-1|^{2} e^{-\pi f^{2}} \\
& =\left(\sqrt{(2 \pi f)^{2}+1}\right)^{2} e^{-\pi f^{2}} \\
\text { or } \quad S_{y}(f) & =\left(4 \pi^{2} f^{2}+1\right) e^{-\pi f^{2}}
\end{aligned}
\end{aligned}
$$

MCQ 1.29 The output of a 3-stage Johnson (twisted ring) counter is fed to a digital-to analog (D/A) converter as shown in the figure below. Assume all the states of the counter to be unset initially. The waveform which represents the D / A converter output v_{o} is

(A)

(B)

(C)

SOL 1.29 All the states of the counter are initially runset.

State Initially are shown below in table :

Q_{2}	Q_{1}	Q_{0}	
0	0	0	0
1	0	0	4
1	1	0	6
1	1	1	7
0	1	1	3
0	0	1	1
0	0	0	0

Hence (A) is correct option.

MCQ 1.30 Two D flip-flops are connected as a synchronous counter that goes through the following $Q_{B} Q_{A}$ sequence $00 \rightarrow 11 \rightarrow 01 \rightarrow 10 \rightarrow 00 \rightarrow \ldots$
The combination to the inputs DA and DB are
(A) $D_{A}=Q_{B} ; \quad D_{B}=Q_{A}$
(B) $D_{A}=\overline{Q_{A}} ; D_{B}=\overline{Q_{B}}$
(C) $D_{A}=\left(Q_{A} \overline{Q_{B}}+\overline{Q_{A}} Q_{B}\right) ; D_{B}=\overline{Q_{A}}$
(D) $D_{A}=\left(Q_{A} Q_{B}+\overline{Q_{A} Q_{B}}\right) ; D_{B}=\overline{Q_{B}}$

SOL 1.30 The sequence is $Q_{B} Q_{A}$ $00 \rightarrow 11 \rightarrow 01 \rightarrow 10 \rightarrow 00 \rightarrow \ldots$

$$
D_{A}=\bar{Q}_{A} \bar{Q}_{B}+Q_{A} Q_{B}
$$

Hence (D) is correct option.
MCQ 1.31 In the circuit shown below, for the MOS transistors, $\mu_{n} C_{o x}=100 \mu / \mathrm{A} / \mathrm{V}^{2}$ and the threshold voltage $V_{T}=1 \mathrm{~V}$. The voltage Vx at the source of the upper transistor is

(A) 1 V
(B) 2 V
(C) 3 V
(D) 3.67 V

SOL 1.31 Given circuit is shown below.

For transistor M_{2},

$$
\begin{aligned}
& V_{G S}=V_{G}-V_{S}=V_{x}-0=V_{x} \\
& V_{D S}=V_{D}-V_{S}=V_{x}-0=V_{x}
\end{aligned}
$$

Since $V_{G S}-V_{T}=V_{x}-1<V_{D S}$, thus M_{2} is in saturation.
By assuming M_{1} to be in saturation we have

$$
\begin{aligned}
I_{D S\left(M_{1}\right)} & =I_{D S\left(M_{2}\right)} \\
\frac{\mu_{n} C_{0 x}}{2}(4)\left(5-V_{x}-1\right)^{2} & =\frac{\mu_{n} C_{0 x^{x}}}{2} 1\left(V_{x}-1\right)^{2} \\
4\left(4-V_{x}\right)^{2} & =\left(V_{x}-1\right)^{2} \\
2\left(4-V_{x}\right) & = \pm\left(V_{x}-1\right)
\end{aligned}
$$

Taking positive root,

$$
\begin{aligned}
8-2 V_{x} & =V_{x}-1 \\
V_{x} & =3 \mathrm{~V}
\end{aligned}
$$

At $V_{x}=3 \mathrm{~V}$ for $M_{1}, V_{G S}=5-3=2 \mathrm{~V}<V_{D S}$. Thus our assumption is true and $V_{x}=3 \mathrm{~V}$.
Hence (C) is correct option.
MCQ 1.32 An input $x(t)=\exp (-2 t) u(t)+\delta(t-6)$ is applied to an LTI system with impulse response $h(t)=u(t)$. The output is
(A) $[1-\exp (-2 t)] u(t)+u(t+6)$
(B) $[1-\exp (-2 t)] u(t)+u(t-6)$
(C) $0.5[1-\exp (-2 t)] u(t)+u(t+6)$
(D) $0.5[1-\exp (-2 t)] u(t)+u(t-6)$

SOL 1.32 Hence (D) is correct option.
We have $x(t)=\exp (-2 t) \mu(t)+s(t-6)$ and $h(t)=u(t)$
Taking Laplace Transform we get

$$
X(s)=\left(\frac{1}{s+2}+e^{-6 s}\right) \text { and } H(s)=\frac{1}{s}
$$

Now

$$
\begin{aligned}
Y(s) & =H(s) X(s) \\
& =\frac{1}{s}\left[\frac{1}{s+2}+e^{-6 s}\right]=\frac{1}{s(s+2)}+\frac{e^{-6 s}}{s}
\end{aligned}
$$

or $\quad Y(s)=\frac{1}{2 s}-\frac{1}{2(s+2)}+\frac{e^{-6 s}}{s}$
Thus $\quad y(t)=0.5[1-\exp (-2 t)] u(t)+u(t-6)$
MCQ 1.33 For a BJT the common base current gain $\alpha=0.98$ and the collector base junction reverse bias saturation current $I_{c o}=0.6 \mu \mathrm{~A}$. This BJT is connected in the common emitter mode and operated in the active region with a base drive current $I_{B}=204 \mathrm{~A}$. The collector current I_{c} for this mode of operation is
(A) 0.98 mA
(B) 0.99 mA
(C) 1.0 mA
(D) 1.01 mA

SOL 1.33 Hence (D) is correct option.
We have

$$
\begin{aligned}
\alpha & =0.98 \\
\beta & =\frac{\alpha}{1-\alpha}=4.9
\end{aligned}
$$

Now
In active region, for common emitter amplifier,

$$
\begin{equation*}
I_{C}=\beta I_{\beta}+(1+\beta) I_{C O} \tag{1}
\end{equation*}
$$

Substituting $I_{C O}=0.6 \mu \mathrm{~A}$ and $I_{B}=20 \mu \mathrm{~A}$ in above eq we have,

$$
I_{C}=1.01 \mathrm{~mA}
$$

MCQ 1.34 If $F(s)=L[f(t)]=\frac{2(s+1)}{s^{2}+4 s+7}$ then the initial and final values of $f(t)$ are respectively
(A) 0,2
(C) $0,2 / 7$

SOL 1.34 Correct Option is ()
MCQ 1.35 In the circuit shown below, the current I is equal to

(A) $14 / 0^{\circ} \mathrm{A}$
(B) $2.0 / 0^{\circ} \mathrm{A}$
(C) $2.8 \angle 0^{\circ} \mathrm{A}$
(D) $3.2 / 0^{\circ} \mathrm{A}$

SOL 1.35 From star delta conversion we have

Thus

$$
R_{1}=\frac{R_{a} R_{b}}{R_{a}+R_{b}+R_{c}}=\frac{6.6}{6+6+6}=2 \Omega
$$

Here

$$
R_{1}=R_{2}=R_{3}=2 \Omega
$$

Replacing in circuit we have the circuit shown below :

Now the total impedance of circuit is

Current $\quad I=\frac{14 / 0^{\circ}}{7}=2 \angle 0^{\circ}$
Hence (B) is correct option.
MCQ 1.36 A numerical solution of the equation $f(x)+\sqrt{x-3}=0$ can be obtained using Newton- Raphson method. If the starting value is $x=2$ for the iteration, the value of x that is to be used in the next step is
(A) 0.306
(B) 0.739
(C) 1.694
(D) 2.306

SOL 1.36 Hence (C) is correct option.
We have

$$
\begin{aligned}
f(x) & =x+\sqrt{x}-3=0 \\
f^{\prime}(x) & =1+\frac{1}{2 \sqrt{x}}
\end{aligned}
$$

Substituting $x_{0}=2$ we get

$$
f^{\prime}\left(x_{0}\right)=1.35355 \text { and } f\left(x_{0}\right)=2+\sqrt{2}-3=0.414
$$

Newton Raphson Method

$$
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}
$$

Substituting all values we have

$$
x_{1}=2-\frac{0.414}{1.3535}=1.694
$$

MCQ 1.37 The electric and magnetic fields for a TEM wave of frequency 14 GHz in a homogeneous medium of relative permittivity ε_{r} and relative permeability $\mu_{r}=1$ are given by

$$
\vec{E}=E_{p} e^{j(\omega t-280 \pi y)} \hat{u}_{z} \mathrm{~V} / \mathrm{m} \quad \vec{H}=3 e^{j(\omega t-280 \pi y)} \hat{u}_{x} \mathrm{~A} / \mathrm{m}
$$

Assuming the speed of light in free space to be $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$, the intrinsic impedance of free space to be 120π, the relative permittivity ε_{r} of the medium and the electric field amplitude E_{p} are
(A) $\varepsilon_{r}=3, E_{p}=120 \pi$
(B) $\varepsilon_{r}=3, E_{b}=360 \pi$
(C) $\varepsilon_{r}=9, E_{p}=360 \pi$
(D) $\varepsilon_{r}=9, E_{p}=120 \pi$

SOL 1.37 From the expressions of $\vec{E} \& \vec{H}$, we can write,

$$
\begin{aligned}
\beta & =280 \pi \\
\text { or } \quad \frac{2 \pi}{\lambda} & =280 \pi \Rightarrow \lambda=\frac{1}{140}
\end{aligned}
$$

Wave impedance, $Z_{w}=\frac{|\vec{E}|}{|\vec{H}|}=\frac{E_{p}}{3}=\frac{120 \pi}{\sqrt{\varepsilon_{r}}}$
again,

$$
f=14 \mathrm{GHz}
$$

Now

$$
\lambda=\frac{C}{\sqrt{\varepsilon_{r} f}}=\frac{3 \times 10^{8}}{\sqrt{\varepsilon_{r}} 14 \times 10^{9}}=\frac{3}{140 \sqrt{\varepsilon_{r}}}
$$

or

$$
\frac{3}{140 \sqrt{\varepsilon_{r}}}=\frac{1}{140}
$$

or

$$
\varepsilon_{r}=9
$$

Now

$$
\frac{E_{p}}{3}=\frac{120 \pi}{\sqrt{9}}=E_{p}=120 \pi
$$

Hence (D) is correct option.
MCQ 1.38 A message signal $m(t)=\cos 200 \pi t+4 \cos \pi t$ modulates the carrier $c(t)=\cos 2 \pi f_{c} t$ where $f_{c}=1 \mathrm{MHz}$ to produce an AM signal. For demodulating the generated AM signal using an envelope detector, the time constant RC of the detector circuit should satisfy
(A) $0.5 \mathrm{~ms}<\mathrm{RC}<1 \mathrm{~ms}$
(B) $1 \mu \mathrm{~s} \ll \mathrm{RC}<0.5 \mathrm{~ms}$
(C) $\mathrm{RC} \ll \mu \mathrm{s}$
(D) $\mathrm{RC} \gg 0.5 \mathrm{~ms}$

SOL 1.38 Highest frequency component in $m(t)$ is $f_{m}=4000 \pi / 2 \pi=2000 \mathrm{~Hz}$ Carrier frequency $f_{C}=1 \mathrm{MHz}$
For Envelope detector condition

$$
\begin{aligned}
& 1 / f_{C} \ll R C \ll 1 / f_{m} \\
& 1 \mu \mathrm{~s} \ll R C \ll 0.5 \mathrm{~ms}
\end{aligned}
$$

Hence (B) is correct option.
MCQ 1.39 The block diagram of a system with one input it and two outputs y_{1} and y_{2} is given below.

A state space model of the above system in terms of the state vector \underline{x} and the output vector $\underline{y}=\left[\begin{array}{ll}y_{1} & y_{2}\end{array}\right]^{T}$ is
(A) $\underline{x}=[2] \underline{x}+[1] u ; ~ \underline{y}=\left[\begin{array}{ll}1 & 2\end{array}\right] \underline{x}$
(B) $\underline{\dot{x}}=[-2] \underline{x}+[1] u ; \quad \underline{y}=\left[\begin{array}{l}1 \\ 2\end{array}\right] \underline{x}$
(C) $\underline{\dot{x}}=\left[\begin{array}{cc}-2 & 0 \\ 0 & -2\end{array}\right] \underline{x}+\left[\begin{array}{l}1 \\ 1\end{array}\right] u ; \underline{y}=\left[\begin{array}{ll}1 & 2\end{array}\right] \underline{x}$
(D) $\dot{\underline{x}}=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right] \underline{x}+\left[\begin{array}{l}1 \\ 1\end{array}\right] u ; \underline{y}=\left[\begin{array}{l}1 \\ 2\end{array}\right] \underline{x}$

SOL 1.39

Hence (B) is correct option.
Here

$$
\begin{aligned}
& x=y_{1} \text { and } \dot{x}=\frac{d y_{1}}{d x} \\
& \underline{y}=\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{c}
x \\
2 x
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \underline{x}
\end{aligned}
$$

Now $\quad y_{1}=\frac{1}{s+2} u$

$$
\begin{aligned}
y_{1}(s+2) & =u \\
\dot{y}_{1}+2 y_{1} & =u \\
\dot{x}+2 x & =u \\
\dot{x} & =-2 x+u \\
\underline{x} & =[-2] \underline{x}+[1] u
\end{aligned}
$$

Drawing SFG as shown below

Thus

$$
\begin{aligned}
& \dot{x}_{1}=[-2] \underline{x}_{1}+[1] u \\
& y_{1}=\underline{x_{1}} ; y_{2}=2 \underline{x}_{1} \\
& \underline{y}=\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \underline{x_{1}}
\end{aligned}
$$

Here $\quad \underline{x_{1}}=\underline{x}$
MCQ 1.40 Two systems $H_{1}(Z)$ and $H_{2}(Z)$ are connected in cascade as shown below. The overall output $y(n)$ is the same as the input $x(n)$ with a one unit delay. The transfer function of the second system $H_{2}(Z)$ is
$x(n) \longrightarrow H_{1}(z)=\frac{\left(1-0.4 z^{-1}\right)}{\left(1-0.6 z^{-1}\right)} \longrightarrow H_{2}(z) \longrightarrow y(n)$
(A) $\frac{1-0.6 z^{-1}}{z^{-1}\left(1-0.4 z^{-1}\right)}$
(B) $\frac{z^{-1}\left(1-0.6 z^{-1}\right)}{\left(1-0.4 z^{-1}\right)}$
(C) $\frac{z^{-1}\left(1-0.4 z^{-1}\right)}{\left(1-0.6 z^{-1}\right)}$
(D) $\frac{1-0.4 z^{-1}}{z^{-1}\left(1-0.6 z^{-1}\right)}$

SOL 1.40 Hence (B) is correct option.

$$
\begin{aligned}
y(n) & =x(n-1) \\
\text { or } \quad Y(z) & =z^{-1} X(z) \\
\text { or } \quad \frac{Y(z)}{X(z)}=H(z) & =z^{-1} \\
\text { Now } \quad H_{1}(z) H_{2}(z) & =z^{-1} \\
\left(\frac{1-0.4 z^{-1}}{1-0.6 z^{-1}}\right) H_{2}(z) & =z^{-1} \\
H_{2}(z) & =\frac{z^{-1}\left(1-0.6 z^{-1}\right)}{\left(1-0.4 z^{-1}\right)}
\end{aligned}
$$

MCQ 1.41 An 8085 assembly language program is given below. Assume that the carry flag is initially unset. The content of the accumulator after the execution of the program is

MVI	A, 07H
RLC	
MOV	B, A
RLC	
RLC	
ADD	B
RRC	

(A) 8 CH
(B) 64 H
(C) 23 H
(D) 15 H

SOL 1.41 Initially Carry Flag, $C=0$
MVI A, $07 \mathrm{H} \quad ; A=00000111$
RLC ; Rotate left without carry. $A=00001110$
MVO B, A $\quad ; B=A=00001110$

RLC $\quad ; A=00011100$
RLC $\quad ; A=00111000$
$\begin{array}{lll}\text { ADD B } & ; A= \\ & ; & +00111000 \\ & ; & 010001110\end{array}$
RRC ; Rotate Right with out carry, $A=00100011$
Thus $A=23 \mathrm{H}$
Hence (C) is correct option.
MCQ 1.42 The first six points of the 8-point DFT of a real valued sequence are $5,1-j 3,0,3-j 4,0$ and $3+j 4 \ldots$. The last two points of the DFT are respectively
(A) $0,1-j 3$
(B) $0,1+j 3$
(C) $1+j 3,5$
(D) $1-j 3,5$

SOL 1.42 For 8 point DFT, $x^{*}[1]=x[7] ; x^{*}[2]=x[6] ; x^{*}[3]=x[5]$ and it is conjugate symmetric about $x[4], x[6]=0 ; x[7]=1+j 3$
Hence (B) is correct option.
 switch is initially closed. At time $t=0$, the switch is opened. The time t at which Q_{1} leaves the active region is

(A) 10 ms
(B) 25 ms
(C) 50 ms
(D) 100 ms

SOL 1.43 Hence (C) is correct option

In active region
Emitter voltage

$$
V_{B E o n}=0.7 \mathrm{~V}
$$

$$
V_{E}=V_{B}-V_{B E o \mathrm{n}}=-5.7 \mathrm{~V}
$$

Emitter Current

$$
I_{E}=\frac{V_{E}-(-10)}{4.3 \mathrm{k}}=\frac{-5.7-(-10)}{4.3 \mathrm{k}}=1 \mathrm{~mA}
$$

Now $\quad I_{C} \approx I_{E}=1 \mathrm{~mA}$
Applying KCL at collector

with time, the capacitor charges and voltage across collector changes from 0 towards negative.
When saturation starts, $V_{C E}=0.7 \Rightarrow V_{C}=+5 \mathrm{~V}$ (across capacitor)
Thus from (1) we get, $+5=\frac{0.5 \mathrm{~mA}}{5 \mu \mathrm{~A}} T$
or

$$
T=\frac{5 \times 5 \times 10^{-6}}{0.5 \times 10^{-3}}=50 \mathrm{msec}
$$

MCQ 1.44 In the circuit shown below, the network N is described by the following Y matrix: $Y=\left[\begin{array}{cc}0.1 \mathrm{~S} & -0.01 \mathrm{~S} \\ 0.1 \mathrm{~S} & 0.1 \mathrm{~S}\end{array}\right]$. the voltage gain $\frac{V_{2}}{V_{1}}$ is

(A) $1 / 90$
(B) $-1 / 90$
(C) $-1 / 99$
(D) $-1 / 11$

SOL 1.44 From given admittance matrix we get

$$
\begin{align*}
& I_{1}=0.1 V_{1}-0.01 V_{2} \text { and } \tag{1}\\
& \quad I_{2}=0.01 V_{1}+0.1 V_{2} \tag{2}
\end{align*}
$$

Now, applying KVL in outer loop;

$$
V_{2}=-100 I_{2}
$$

or

$$
\begin{equation*}
I_{2}=-0.01 V_{2} \tag{3}
\end{equation*}
$$

From eq (2) and eq (3) we have

$$
\begin{aligned}
-0.01 V_{2} & =0.01 V_{1}+0.1 V_{2} \\
-0.11 V_{2} & =0.01 V_{1} \\
\frac{V_{2}}{V_{1}} & =\frac{-1}{11}
\end{aligned}
$$

Hence (D) is correct option.
MCQ 1.45 In the circuit shown below, the initial charge on the capacitor is 2.5 mC , with the voltage polarity as indicated. The switch is closed at time $t=0$. The current $i(t)$ at a time t after the switch is closed is

(A) $i(t)=15 \exp \left(-2 \times 10^{3} t\right) \mathrm{A}$
(B) $i(t)=5 \exp \left(-2 \times 10^{3} t\right) \mathrm{A}$
(C) $i(t)=10 \exp \left(-2 \times 10^{3} t\right) \mathrm{A}$
(D) $i(t)=-5 \exp \left(-2 \times 10^{3} t\right) \mathrm{A}$

SOL 1.45 Here we take the current flow direction as positive.
At $t=0^{-}$voltage across capacitor is

$$
V_{C}\left(0^{-}\right)=-\frac{Q}{C}=-\frac{2.5 \times 10^{-3}}{50 \times 10^{-6}}=-50 \mathrm{~V}
$$

Thus

$$
V_{C}\left(0^{+}\right)=-50 \mathrm{~V}
$$

In steady state capacitor behave as open circuit thus

$$
V(\infty)=100 \mathrm{~V}
$$

Now,

$$
\begin{aligned}
V_{C}(t) & =V_{C}(\infty)+\left(V_{C}\left(0^{+}\right)-V_{C}(\infty)\right) e^{-t / R C} \\
& =100+(-50-100) e^{\overline{10 \times 50 \times 10^{-6}}} \\
& =100-150 e^{-\left(2 \times 10^{3} t\right)}
\end{aligned}
$$

Now

$$
\begin{aligned}
i_{c}(t) & =C \frac{d V}{d t} \\
& =50 \times 10^{-6} \times 150 \times 2 \times 10^{3} e^{-2 \times 10^{3} t} \mathrm{~A} \\
& =15 e^{-2 \times 10^{3} t} \\
i_{c}(t) & =15 \exp \left(-2 \times 10^{3} t\right) \mathrm{A}
\end{aligned}
$$

Hence (A) is correct option.
MCQ 1.46 The system of equations

$$
\begin{aligned}
& x+y+z=6 \\
& x+4 y+6 y=20
\end{aligned}
$$

$x+4 y+\lambda z=\mu$
has NO solution for values of λ and μ given by
(A) $\lambda=6, \mu=20$
(B) $\lambda=6, \mu \neq 20$
(C) $\lambda \neq 6, \mu=20$
(D) $\lambda \neq 6, \mu=20$

SOL 1.46 Writing $A: B$ we have

$$
\left[\begin{array}{ccc:c}
1 & 1 & 1 & :
\end{array}\right] \quad 60
$$

Apply $R_{3} \rightarrow R_{3}-R_{2}$

$$
\left[\begin{array}{ccccc}
1 & 1 & 1 & : & 6 \\
1 & 4 & 6 & : & 20 \\
0 & 0 & \lambda-6 & : & \mu-20
\end{array}\right]
$$

For equation to have solution, rank of A and $A: B$ must be same. Thus for no solution; $\lambda=6, \mu \neq 20$
Hence (B) is correct option
MCQ 1.47 A fair dice is tossed two times. The probability that the second toss results in a value that is higher than the first toss is
(A) $2 / 36$
(C) $5 / 12$

SOL 1.47 Total outcome are 36 out of which favorable outcomes are :
$(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)$;
$(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)$ which are 15 .
Thus

$$
P(E)=\frac{\text { No. of favourable outcomes }}{\text { No. of total outcomes }}=\frac{15}{36}=\frac{5}{12}
$$

Hence (C) is correct option.

Common Data Questions: 48 \& 49

The channel resistance of an N-channel JFET shown in the figure below is 600Ω when the full channel thickness $\left(t_{c h}\right)$ of $10 \mu \mathrm{~m}$ is available for conduction. The builtin voltage of the gate $P^{+} N$ junction $\left(V_{b i}\right)$ is -1 V . When the gate to source voltage $\left(V_{G S}\right)$ is 0 V , the channel is depleted by $1 \mu \mathrm{~m}$ on each side due to the built in voltage and hence the thickness available for conduction is only $8 \mu \mathrm{~m}$

MCQ 1.48 The channel resistance when $V_{G S}=-3 \mathrm{~V}$ is
(A) 360Ω
(B) 917Ω
(C) 1000Ω
(D) 3000Ω

SOL 1.48 Full channel resistance is

$$
\begin{equation*}
r \frac{\rho \times L}{W \times a}=600 \Omega \tag{1}
\end{equation*}
$$

If $V_{G S}$ is applied, Channel resistance is

$$
r^{\prime}=\frac{\rho \times L}{W \times b}
$$

Pinch off voltage,

gate

$$
\left|V_{p}\right|=\frac{q N_{D}}{2 \varepsilon} a^{2}
$$

If depletion on each side is $d=1 \mu \mathrm{~m}$ at $V_{G S}=0$.

$$
\begin{aligned}
V_{j} & =\frac{q N_{D}}{2 \varepsilon} d^{2} \\
1 & =\frac{q N_{D}}{2 \varepsilon}\left(1 \times 10^{-6}\right)^{2} \Rightarrow \frac{q N_{D}}{2 \varepsilon}=10^{12}
\end{aligned}
$$

Now from equation (2), we have

$$
\begin{aligned}
& \quad\left|V_{p}\right|=10^{12} \times\left(5 \times 10^{-6}\right)^{2} \\
& \text { or } \quad V_{p}=-25 \mathrm{~V} \\
& \text { At } V_{G S}=-3 \mathrm{~V} \\
& \qquad \quad b=5\left(1-\sqrt{\frac{-3}{-25}}\right) \mu \mathrm{m}=3.26 \mu \mathrm{~m} \\
& \qquad r^{\prime}=\frac{\rho L}{W \times b}=\frac{\rho L}{W a} \times \frac{a}{b}=600 \times \frac{5}{3.26}=917 \Omega
\end{aligned}
$$

Hence (B) is correct option.
MCQ 1.49 The channel resistance when $V_{G S}=0 \mathrm{~V}$ is
(A) 480Ω
(B) 600Ω
(C) 750Ω
(D) 1000Ω

SOL 1.49
At $V_{G S}=0 \mathrm{~V}, b$
$=4 \mu \mathrm{~m}$
since $2 b=8 \mu \mathrm{~m}$
Thus $r^{\prime}=\frac{\rho L}{W a} \times \frac{a}{b}=600 \times \frac{5}{4}=750 \Omega$
Hence (C) is correct option.

Common Data Questions: 50 \& 51

The input-output transfer function of a plant $H(S)=\frac{100}{s(s+10)^{2}}$. The plant is placed in a unity negative feedback configuration as shown in the figure below.

MCQ 1.50 The gain margin of the system under closed loop unity negative feedback is
(A) 0 dB
(C) 26 dB

SOL 1.50 Hence (C) is correct option.
We have

$$
G(s) H(s)=\frac{100}{s(s+10)^{2}}
$$

Now

$$
G(j \omega) H(j \omega)=\frac{100}{j \omega(j \omega+10)^{2}}
$$

If ω_{p} is phase cross over frequency $/ G(j \omega) H(j \omega)=180^{\circ}$
Thus

$$
-180^{\circ}=100 \tan ^{-1} 0-\tan ^{-1} \infty-2 \tan ^{-1}\left(\frac{\omega_{p}}{10}\right)
$$

or

$$
-180^{\circ}=-90-2 \tan ^{-1}\left(0.1 \omega_{p}\right)
$$

or

$$
45^{\circ}=\tan ^{-1}\left(0.1 \omega_{p}\right)
$$

or

$$
\tan 45^{\circ}=0.1 \omega_{p}=1
$$

$$
\omega_{p}=10 \mathrm{rad} / \mathrm{se}
$$

Now

$$
|G(j \omega) H(j \omega)|=\frac{100}{\omega\left(\omega^{2}+100\right)}
$$

At $\omega=\omega_{p}$

$$
\begin{aligned}
|G(j \omega) H(j \omega)| & =\frac{100}{10(100+100)}=\frac{1}{20} \\
\text { Gain Margin } & =-20 \log _{10}|G(j \omega) H(j \omega)| \\
& =-20 \log _{10}\left(\frac{1}{20}\right) \\
& =26 \mathrm{~dB}
\end{aligned}
$$

MCQ 1.51 The signal flow graph that DOES NOT model the plant transfer function $H(S)$ is
(A)

(B)

(C)

(D)

SOL 1.51 Hence (D) is correct option From option (D)

$$
\begin{aligned}
T F & =H(s) \\
& =\frac{100}{s\left(s^{2}+100\right)} \neq \frac{100}{s(s+10)^{2}}
\end{aligned}
$$

Linked Answer Questions: Q. 52 to Q. 55 Carry Two Marks Each

Statement for Linked Answer Questions: 52 \& 53

MCQ 1.52 The bias current $I_{D C}$ through the diodes is
(A) 1 mA
(B) 1.28 mA
(C) 1.5 mA
(D) 2 mA

SOL 1.52 Hence (A) is correct option.
The current flows in the circuit if all the diodes are forward biased. In forward biased there will be 0.7 V drop across each diode.

Thus

$$
I_{D C}=\frac{12.7-4(0.7)}{9900}=1 \mathrm{~mA}
$$

MCQ 1.53 The ac output voltage $V_{a c}$ is
(A) $0.25 \cos (\omega t) \mathrm{mV}$
(B) $1 \cos (\omega t) \mathrm{mV}$
(C) $2 \cos (\omega t) \mathrm{mV}$
(D) $22 \cos (\omega t) \mathrm{mV}$

SOL 1.53 Hence (B) is correct option.
The forward resistance of each diode is

Thus

$$
\begin{aligned}
r & =\frac{V_{T}}{I_{C}}=\frac{25 \mathrm{mV}}{1 \mathrm{~mA}}=25 \Omega \\
V_{a c} & =V_{i} \times\left(\frac{4(r)}{4(r)+9900}\right) \\
& =100 \mathrm{mV} \cos (\omega t) 0.01=1 \cos (\omega t) \mathrm{mV}
\end{aligned}
$$

Statement for Linked Answer Questions: 54 \& 55

A four-phase and an eight-phase signal constellation are shown in the figure below.

MCQ 1.54 For the constraint that the minimum distance between pairs of signal points be d for both constellations, the radii r_{1}, and r_{2} of the circles are
(A) $r_{1}=0.707 d, r_{2}=2.782 d$
(B) $r_{1}=0.707 d, r_{2}=1.932 d$
(C) $r_{1}=0.707 d, r_{2}=1.545 d$
(D) $r_{1}=0.707 d, r_{2}=1.307 d$

SOL 1.54 Four phase signal constellation is shown below

Now

$$
\begin{aligned}
d^{2} & =r_{1}^{2}+r_{1}^{2} \\
d^{2} & =2 r_{1}^{2} \\
r_{1} & =d / \sqrt{2}=0.707 \mathrm{~d}
\end{aligned}
$$

$$
\theta=\frac{2 \pi}{M}=\frac{2 \pi}{8}=\frac{\pi}{4}
$$

Applying Cooine law we have
or

$$
\begin{aligned}
d^{2} & =r_{2}^{2}+r_{2}^{2}-2 r_{2}^{2} \cos \frac{\pi}{4} \\
& =2 r_{2}^{2}-2 r_{2}^{2} 1 / \sqrt{2}=(2-\sqrt{2}) r_{2}^{2} \\
r_{2} & =\frac{d}{\sqrt{2-\sqrt{2}}}=1.3065 \mathrm{~d}
\end{aligned}
$$

Hence (D) is correct option.
MCQ 1.55 Assuming high SNR and that all signals are equally probable, the additional average transmitted signal energy required by the 8-PSK signal to achieve the same error probability as the 4-PSK signa is
(A) 11.90 dB
(C) 6.79 dB

SOL 1.55 Here P_{e} for 4 PSK and 8 PSK is same because P_{e} depends on d. Since P_{e} is same, d is same for 4 PSK and 8 PSK.

Additional Power SNR

$$
\begin{aligned}
& =(S N R)_{2}-(S N R)_{1} \\
& =10 \log \left(\frac{E_{S 2}}{N o}\right)-10 \log \left(\frac{E_{S 1}}{N o}\right) \\
& =10 \log \left(\frac{E_{S 2}}{E_{S 1}}\right) \\
& =10 \log \left(\frac{r_{2}}{r_{1}}\right)^{2} \Rightarrow 20 \log \left(\frac{r_{2}}{r_{1}}\right)=20 \log \frac{1.3065 \mathrm{~d}}{0.707 \mathrm{~d}}
\end{aligned}
$$

Additional $\mathrm{SNR}=5.33 \mathrm{~dB}$
Hence (D) is correct option.

Q. No. 56 - 60 Carry One Mark Each

MCQ 1.56 There are two candidates P and Q in an election. During the campaign, 40% of the voters promised to vote for P , and rest for Q . However, on the day of election 15% of the voters went back on their promise to vote for P and instead voted forQ. 25% of the voters went back on their promise to vote for Q and instead voted for P. Suppose, P lost by 2 votes, then what was the total number of voters?
(A) 100
(B) 110
(C) 90
(D) 95

SOL 1.56 Let us assume total voters are 100. Thus 40 voter (i.e. 40%) promised to vote for P and 60 (rest 60%) promised to vote fore Q .
Now, 15% changed from P to Q (15% out of 40)
Changed voter from P to Q $\quad \frac{15}{100} \times 40=6$

Thus P P got 49 votes and Q got 51 votes, and P lost by 2 votes, which is given. Therefore 100 voter is true value.
Hence (A) is correct option.
MCQ 1.57 Choose the most appropriate word from the options given below to complete the following sentence:
It was her view that the country's problems had been \qquad by foreign technocrats, so that to invite them to come back would be counter-productive.
(A) Identified
(B) ascertained
(C) Texacerbated
(D) Analysed

SOL 1.57 The sentence implies that technocrats are counterproductive (negative). Only (C) can bring the same meaning.
Hence (C) is correct option
MCQ 1.58 Choose the word from the options given below that is most nearly opposite in meaning to the given word:
Frequency
(A) periodicity
(B) rarity
(C) gradualness
(D) persistency

SOL 1.58 Periodicity is almost similar to frequency. Gradualness means something happening with time. Persistency is endurance. Rarity is opposite to frequency. Hence (B) is correct option.

MCQ 1.59 Choose the most appropriate word from the options given below to complete the following sentence:
Under ethical guidelines recently adopted by the Indian Medical Association, human genes are to be manipulated only to correct diseases for which \qquad treatments are unsatisfactory.
(A) Similar
(B) Most
(C) Uncommon
(D) Available

SOL 1.59 Available is appropriate because manipulation of genes will be done when other treatments are not useful.
Hence (D) is correct option.
MCQ 1.60 The question below consists of a pair of related words followed by four pairs of words. Select the pair that best expresses the relation in the original pair:
Gladiator : Arena
(A) dancer : stage
(B) commuter: train
(C) teacher : classroom

(D) lawyer : courtroom

SOL 1.60 A gladiator performs in an arena. Commutators use trains. Lawyers performs, but do not entertain like a gladiator. Similarly, teachers educate. Only dancers performs on a stage.
Hence (A) is correct option.

Q. No. 61 - 65 Carry Two Marks Each

MCQ 1.61 The fuel consumed by a motorcycle during a journey while traveling at various speeds is indicated in the graph below.

The distances covered during four laps of the journey are listed in the table below

Lap	Distance (kilom- eters)	Average speed (kilometers per hour)
P	15	15
Q	75	45
R	40	75
S	10	10

From the given data, we can conclude that the fuel consumed per kilometre was least during the lap
(A) P
(B) Q
(C) R
(D) S

SOL 1.61 Since fuel consumption/litre is asked and not total fuel consumed, only average speed is relevant. Maximum efficiency comes at $45 \mathrm{~km} / \mathrm{hr}$, So least fuel consumer per litre in lap Q
Hence (B) is correct option.
MCQ 1.62 Three friends, R, S and T shared toffee from a bowl. R took $1 / 3$ rd of the toffees, but returned four to the bowl. S took $1 / 4$ th of what was left but returned three toffees to the bowl. T took half of the remainder but returned two back into the bowl. If the bowl had 17 toffees left, how many toffees-were originally there in the bowl?
(A) 38
$1 \mathrm{C}(\mathrm{B}) 31$
(D) 41

SOL 1.62 Let total no of toffees be x. The following table shows the all calculations.

	Friend	Bowl Status
	$=\frac{x}{3}-4$	$=\frac{2 x}{3}+4$
	$=\frac{1}{4}\left[\frac{2 x}{3}+4\right]-3$	
$=\frac{x}{6}+1-3=\frac{x}{6}-2$	$=\frac{2 x}{3}+4-\frac{x}{6}+2$	
	$=\frac{x}{2}+6$	
	$=\frac{x}{4}\left(\frac{x}{2}+6\right)-2$	$=\frac{x}{2}+6-\frac{x}{4}-1$
		$=\frac{x}{4}+5$

Now, $\quad \frac{x}{4}+5=17$
or

$$
\begin{aligned}
& \frac{x}{4}=17-5=12 \\
& x=12 \times 4=48
\end{aligned}
$$

Hence (C) is correct option.
MCQ 1.63 Given that $f(y)=\frac{|y|}{y}$, and q is any non-zero real number, the value of $|f(q)-f(-q)|$ is
(A) 0
(B) -1
(C) 1
(D) 2

SOL 1.63 Hence (D) is correct option.

$$
f(y)=\frac{|y|}{y}
$$

Now $\quad f(-y)=\frac{|-y|}{y}=-f(y)$
or

$$
|f(q)-f(-q)|=|2 f(q)|=2
$$

MCQ 1.64 The sum of n terms of the series $4+44+444+\ldots$ is
(A) $(4 / 81)\left[10^{n+1}-9 n-1\right]$
(B) $(4 / 81)\left[10^{n-1}-9 n-1\right]$
(C) $(4 / 81)\left[10^{n+1}-9 n-10\right]$
(D) $(4 / 81)\left[10^{n}-9 n-10\right]$

SOL 1.64 Hence (C) is correct option.

$$
\begin{aligned}
\text { nce (C) is correct option. } \\
\begin{aligned}
4+44+444+\ldots \ldots \ldots . . & 4(1+11+111+\ldots \ldots) \\
& =\frac{4}{9}(9+99+999+\ldots \ldots \ldots . .) \\
& =\frac{4}{9}[(10-1)+(100-1)+\ldots \ldots .] \\
& =\frac{4}{9}\left[10\left(1+10+10^{2}+10^{3}\right)-n\right] \\
& =\frac{4}{9}\left[10 \times \frac{10^{n}-1}{10-1}-n\right] \\
& =\frac{4}{81}\left[10^{n+1}-10-9 n\right]
\end{aligned}
\end{aligned}
$$

MCQ 1.65 The horse has played a little known but very important role in the field of medicine. Horses were injected with toxins of diseases until their blood built up immunities. Then a serum was made from their blood. Serums to fight with diphtheria and tetanus were developed this way.
It can be inferred from the passage that horses were
(A) given immunity to diseases
(B) generally quite immune to diseases
(C) given medicines to fight toxins
(D) given diphtheria and tetanus serums

SOL 1.65 Option B fits the sentence, as they built up immunities which helped humans
create serums from their blood.
Hence (B) is correct option.

Answer Sheet											
1.	(C)	13.	(A)	25.	(A)	37.	(D)	49.	(C)	61.	(B)
2.	(C)	14.	(C)	26.	(A)	38.	(B)	50.	(C)	62.	(C)
3.	(D)	15.	(B)	27.	(A)	39.	(B)	51.	(D)	63.	(D)
4.	(B)	16.	(A)	28.	(A)	40.	(B)	52.	(A)	64.	(C)
5.	(B)	17.	(A)	29.	(A)	41.	(C)	53.	(B)	65.	(B)
6.	(A)	18.	(C)	30.	(D)	42.	(B)	54.	(D)		
7.	(B)	19.	(A)	31.	(C)	43.	(C)	55.	(D)		
8.	(A)	20.	(D)	32.	(D)		(D)	56.	(A)		
9.	(C)	21.	(D)	33.	(D)		(A)	57.	(C)		
10.	(B)	22.	(D)	34.	(*)		(B)	58.	(B)		
11.	(A)	23.	(A)	35.	(B)		(C)	59.	(D)		
12.	(D)	24.	(C)	36.	(C)	48.	(B)	60.	(A)		

Exclusive Series By Jhunjhunuwala

GATE CLOUD

By R. K . Kanodia \& Ashish Murolia

GATE Cloud is an exclusive series of books which offers a completely solved question bank to GATE aspirants. The book of this series are featured as
> Over 1300 Multiple Choice Questions with full \& detailed explanations.
> Questions are graded in the order of complexity from basic to advanced level.
> Contains all previous year GATE and IES exam questions from various branches
> Each question is designed to GATE exam level.
> Step by step methodology to solve problems

Available Title In this series

Tignals and Systems (For EC and EE)
Network Analysis (For EC)-- Available in 2 Volumes
Electric Circuit and Fields (For EE) -- Available in two volumes
Electromagnetic (For EC)

Upcoming titles in this series

(1) Digital Electronics (Nov 2012)
[1] Control Systems (Dec 2012)
[a] Communication Systems (Jan 2012)

Exclusive Series By Jhunjhunuwala

GATE CLOUD

By R. K . Kanodia \& Ashish Murolia

GATE Cloud is an exclusive series of books which offers a completely solved question bank to GATE aspirants. The book of this series are featured as
> Over 1300 Multiple Choice Questions with full \& detailed explanations.
> Questions are graded in the order of complexity from basic to advanced level.
> Contains all previous year GATE and IES exam questions from various branches
> Each question is designed to GATE exam level.
> Step by step methodology to solve problems

Available Title In this series

Tignals and Systems (For EC and EE)
Network Analysis (For EC)-- Available in 2 Volumes
Electric Circuit and Fields (For EE) -- Available in two volumes
Electromagnetic (For EC)

Upcoming titles in this series

(1) Digital Electronics (Nov 2012)
[1] Control Systems (Dec 2012)
[a] Communication Systems (Jan 2012)

