SSLC - 2022
 MATHEMATICS
 Practice Question for C Grade

1. ARITHEMETIC SEQUENCES

1. Write an arithmetic sequence with common difference 3 .
(a) $3,6,9$, \qquad
(b) $4,7,10$, \qquad
(c) \qquad , \qquad , \qquad , \qquad ,
(d) \qquad , \qquad , \qquad , \qquad ,
2. Write first term and common difference of the arithmetic sequence.
(a) $10,12,14,16$, \qquad
First term

$$
\left.\begin{array}{l}
\mathrm{f} \\
\mathrm{a} \\
\mathrm{t}_{1}
\end{array}\right\}=10
$$

Common difference $d=12-10=2$
eg: 1) $8,12,16$, \qquad
2) $15,18,21$, \qquad
3) $21,26,31$, \qquad
3. Complete the sequence.
(1) 24,42 , \qquad , \qquad
Ans: d $=42-24=18$
$24,42,60,78$
(2) 18,26 , \qquad , \qquad
(3) 27,40 , \qquad ,
(4) 26,40 , \qquad ,
4. Complete the sequence:
(a) 10 , \qquad 20, \qquad

1. 20 , \qquad , 26, \qquad
2. 24 , \qquad , 42, \qquad
3. 15 , \qquad , 23, \qquad

$10,15,20$

$$
\frac{30}{2}=15
$$

5. Write the algebraic form of the sequence. ($\mathrm{n}^{\text {th }}$ term)
eg: (a) $15,18,21$, \qquad

$$
\text { First term } \mathrm{f} \quad=15
$$

Common difference $\mathrm{d}=18-15=3$
Algebraic form $\left(\mathrm{n}^{\text {th }}\right.$ term $)=\mathrm{dn}+(\mathrm{f}-\mathrm{d})$
$=3 n+(15-3)$
$=3 n+12$
=====

Write algebraic form

1) $5,7,9$, \qquad
2) $10,13,16$, \qquad
3) $5,9,13$, \qquad
6. Find $10^{\text {th }}$ term of the arithmetic sequence.
eg: $10,12,14$, \qquad
$\mathrm{f}=10, \mathrm{~d}=12-10=2$
nth term (algebraic form) $=2 n+8$
$25^{\text {th }}$ term $=\mathrm{t}_{25}=2 \mathrm{n}+8$

$$
\begin{array}{l|l}
=>2 \times 25+8 & \mathrm{n}=25 \\
=>50+8=58 &
\end{array}
$$

$t_{25}=58$
(a) Find $12^{\text {th }}$ term of the seq. 20, 22, 24,
(b) Find $25^{\text {th }}$ term of the seq. $18,22,26$,
(c) Find $100^{\text {th }}$ term of the seq. $2,4,6,8$ \qquad
7. a) Write the algebraic expression of the sequence

9, 15, 21, \qquad
(b) Find the position of 195 in this sequence?

Ans:(a) 9, 15, 21, \qquad

$$
\begin{array}{ll}
\mathrm{f}=9 & \mathrm{~d}=15-9=6 \\
\mathrm{t}_{\mathrm{n}} & =\mathrm{dn}+(\mathrm{f}-\mathrm{d}) \\
& =6 \mathrm{n}+(9-6)=6 \mathrm{n}+3
\end{array}
$$

$$
===
$$

(b) $6 \mathrm{n}+3=195$
$6 \mathrm{n}=195-3=192$
$\mathrm{n}=\frac{192}{6}=32 \quad \therefore 32^{\text {th }}$ term of the seq. is 195
8. (a) Write the algebraic expression of the sequence $10,12,14$, \qquad , \qquad ,
(b) Find the position of 58 in this sequence?
9. Is 2012 a term of the sequence $5,9,13$, \qquad
Ans: First term $\mathrm{f}=5$; Common difference $\mathrm{d}=9-5=4$
$\frac{5}{4} \rightarrow 1 . \operatorname{Reminder}$ ' 1 ' $\left\lvert\, \frac{2012}{4} \rightarrow 503\right.$ Reminder ' 0 '
$\frac{9}{4} \rightarrow 2$. Reminder ' 1 ',
$\therefore 2012$ is not a term of this sequence
$\frac{13}{4} \rightarrow 3$. Reminder ' 1 '
10. Consider the arithmetic sequence $12,23,34$,
(a) What is the $10^{\text {th }}$ term of this sequence?
(b) Is 165 a term of this sequence? Why?
11. Complete the sequence.
(a) \qquad , 7, \qquad , \qquad , 19

$$
\begin{aligned}
& \text { Ans: Common diffreence }=\frac{\text { Term difference }}{\text { Position difference }} \\
& \\
& \begin{aligned}
2^{\text {nd }} \text { Term } & =7 \\
5^{\text {th }} \text { Term } & =19
\end{aligned} \\
& \therefore d=\frac{5^{\text {th }} \text { Term }-2^{\text {nd }} \mathrm{Term}}{5-2}=\frac{19-7}{5-2}=\frac{12}{3}=4 \\
& d
\end{aligned}
$$

\therefore the sequence

$$
\begin{aligned}
& 2^{\text {nd }} \text { Term }=7 \\
& \mathrm{~d}=4 \\
& \therefore 1^{\text {st }} \text { term }=7-4=3 \\
& 3^{\text {rd }} \text { term }=7+4=11 \\
& 4^{\text {th }} \text { term }=11+4=15 \\
& \text { i.e, } \underline{3,} 7, \underline{11,} 15,19
\end{aligned}
$$

12. Complete the sequence.
13. \qquad , 8, \qquad , \qquad , 23
14. \qquad , 5, \qquad , \qquad , 15
15. \qquad , 4, \qquad , \qquad , 22
16. Find the sum of first 5 odd numbers.
$1+3+5+7+9$
Sum of first ' n ' odd numbers.
$1+2+3+4+\ldots \ldots . n=n^{2}$
$1+3=2^{2}=4$
$1+3+5=3^{2}=9$
$1+3+5+7=4^{2}=16$
$1+3+5+7+9=5^{2}=25$
$1+3+5+$ \qquad $+15=$ \qquad
$1+3+5+$ \qquad $+21=$ \qquad
17. Find the sum of terms of the series.
$10,12,14$, \qquad 102.
$\mathrm{t}_{1}=\mathrm{f}=10 \quad \mathrm{~d}=2 \quad \mathrm{t}_{\mathrm{n}}=102$
Number of terms ' n ' $=\frac{\mathrm{tn}-\mathrm{t} 1}{\mathrm{~d}}+1$

$$
\mathrm{n}=\frac{102-10}{\mathrm{~d}}+1=\frac{92}{2}+1=46+1=47
$$

Sum

$$
\begin{aligned}
& =\frac{47}{2}(\text { First term }+ \text { Last term }) \\
& =\frac{47}{2}(10+102)=\frac{47}{2}(112)=\frac{47 \times 112}{2}=\begin{array}{c}
282 \\
===
\end{array}
\end{aligned}
$$

15. Find the sum of terms:
16. $10,15,20,25$, \qquad 125
17. $25,50,75$, \qquad 675
18. $2,4,6,8,10$, \qquad 1002
19. $10,20,30$, \qquad , 110

1. Arithemetic Sequences

1. Consider the arithmetic sequence $5,9,13 \ldots .$.
(a) Write next two terms.
(b) Is 2012 a term of this sequence? Why ?
2. Consider the arithmetic sequence $12,23,34, \ldots \ldots$.
(a) Write algebraic form of this sequence.
(b) Find $10^{\text {th }}$ term?
3. Write an arithmetic sequence with common difference 3 . Find its $11^{\text {th }}$ term.
4. Find the missing term of the given arithmetic sequences.
(a) 10 , \qquad , 20, \qquad (b) 12 , \qquad 20, \qquad
(c) 15 , \qquad , \qquad 30
(d) 6 , \qquad , \qquad 18
\qquad , 42
(e) \qquad , 6, \qquad , 16
(f) \qquad , 24,
5. The algebraic form of an arithmetic sequence is $6 n+5$.
(a) Write the sequence.
(b) Find $15^{\text {th }}$ term.
6. The algebraic form of an arithmetic sequences is $3 n+5$.
(a) Write the sequence
(b) Find $20^{\text {th }}$ term
7. 8^{hh} term of an Arithmetic sequence is 53 and $15^{\text {th }}$ term is 102 .
(a) Find the common difference.
(b) Find $25^{\text {th }}$ term of this sequence.

CIRCLES \& TANGENTS

- Angle in a semicircle is right angled. $\left(90^{\circ}\right)$
- Half central angle of an arc is equal to the angle made by that arc on the alternate arc.
- The opposite angles of a cyclic quadrilateral are supplementary. (Sum 180°)

- Tangents and radius are \perp r.
- Any two points on the circle and the point of intersection of the tangents through those points constitute a cyclic quadrilateral.

PQ is a tangent
Find $\angle \mathrm{P}$ and $\angle \mathrm{Q}$.

$\angle \mathrm{C}=60^{\circ}$
AC, BC are tangents.
Find $\angle \mathrm{A}, \& \angle \mathrm{~B}$.
Find $\angle \mathrm{AOB}$.

CIRCLES - CONSTRUCTIONS

1. Draw a rectangle of sides 5 cm and 3 cm . Construct a square of the same area.
2. Draw a rectangle with sides 6 cm and 5 cm . Construct a square of the same area.
3. Draw a rectangle of sides 6 cm and 4 cm . Construct a square of the same area.

TANGENTS - CONSTRUCTIONS

1. Draw a circle of radius 4 cm , mark a point P on the circle. Draw a tangent through P.
2. Draw a circle of radius 4.5 cm . Mark a point P on the circle. Draw a tangent through the point P.
3. Draw a circle of radius 3 cm . Mark a point P 8 cm away from the its centre. Draw tangents from P to the circle. Measure the length of tangents.
4. Draw a circle of radiuis 4.5 cm . Mark a point P 8.5 an away from the centre. Draw tangents from P to the circle. Measure the length of tangents.

CIRCLES - CONSTRUCTIONS

1. Draw a circle with radius 5 cm . Draw a triangle with its vertices on the circle and having angles $35^{\circ}, 72^{\circ}, 73^{\circ}$.
2. Construct a triangle with two angles 50° and 65° and circumradius 3 cm . Write the length of the sides of the triangle.
3. Construct a square of area $12 \mathrm{~cm}^{2}$.
4. Draw a rectangle of sides 5 cm and 3 cm . Construct a square of the same area.
5. The sides of a triangle are $4 \mathrm{~cm}, 7 \mathrm{~cm}$ and 8 cm . Draw it and construct a square of the same area.
6. Draw an isosceles triangle of hypotenuse 7 cm .
7. Draw a rectangle of length 5 cm and breadth 4 cm . Construct a new rectangle having the same area and one of its sides as 6 cm .

TANGENTS - CONSTRUCTIONS

1. The radius of a circle touching all sides of an equilateral triangle is 3 cm . Draw this triangle.

2 Radius of an incircle to a triangle is 3 cm . Two angles of this triangle are 55° and 63°. Draw this triangle.
3. Draw a triangle of sides 6 cm and 8 cm , angle between them is 70°. And draw its incircle and measure its in radius.
4. Draw an equilateral triangle with sides 4 cm . Construct its incircle and measure the radius.
5. Draw a circle of radius 3 cm . Mark a point $\mathrm{P}, 8 \mathrm{~cm}$ away from its centre. Draw tangents from P to the circle. Measure the length of tangents.
6. Draw a triangle of sides $6 \mathrm{~cm}, 7 \mathrm{~cm}$, and 8 cm . Draw a circle which touches all sides of the triangle and measure its radius.

COORDINATES, GEOMETRY AND ALGEBRA

1. Draw X and Y axis. Mark the points given below.
(a) $(1,2),(3,4),(2,1),(1,1)$
(b) $(0,2),(3,1),(-1,2),(3,0)$
(c) $(1,3),(0,4),(4,0),(-2,3)$
2. Two opposite vertices are given. Find co-ordinates of other two vertices.

$(1,2)$

3. Co-ordinates of two opposite vertices of a rectangle are given as $(1,2)$ and $(3,4)$. Find co-ordinates of other two vertices.
4. Find coordinates of the fourth vertex of the parallalogram.
$(1,3) \mathrm{Q}$

$(6,5)$ B

5. $\mathrm{A}(2,3), \mathrm{B}(7,4), \mathrm{D}(3,8)$ are the co-ordinates of vertices of a parallalogram $A B C D$. Find co-ordinates of vertex C.

Mid Point

1. Find the mid point of the line joining the points $A(3,4), B(7,8)$

$$
\begin{aligned}
\text { Midpoint } & =\left(\frac{x_{1}+x_{2}}{2}, \frac{x_{1}+x_{2}}{2}\right) \Rightarrow\left(\frac{3+7}{2}, \frac{4+8}{2}\right) \Rightarrow\left(\frac{10}{2}, \frac{12}{2}\right) \\
& =(5,6)
\end{aligned}
$$

2. Find coordinates of the midpoints.
(a) $\mathrm{A}(5,7), \mathrm{B}(8,10)$
(b) $\mathrm{P}(1,2), \mathrm{Q}(9,12)$
(c) $\mathrm{A}(2,4), \mathrm{B}(10,12)$
(d) $\mathrm{A}(0,2), \mathrm{B}(8,10)$

Slope

1. Find slope of the line joining the points $\mathrm{A}(1,2), \mathrm{B}(4,7)$.
$\mathrm{A}(1,2) \quad \mathrm{B}(4,7)$

Slope $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \longrightarrow\left(\frac{\mathrm{y} \text { difference }}{x \text { difference }}\right)$

Slope $=\frac{7-2}{4-1}=\frac{5}{3}$
2. Find slope
(a) $\mathrm{A}(2,3), \mathrm{B}(2,8)$
(b) $\mathrm{P}(1,4), \mathrm{Q}(5,6)$
(c) $\mathrm{A}(0,2), \mathrm{B}(7,9)$

Distance formula

1. Find distance between the points $\mathrm{A}(1,2), \mathrm{B}(3,7)$. distance $=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

$$
\begin{aligned}
\mathrm{A}(1,2), \mathrm{B}(3,7) \quad \text { distance } & =\sqrt{(3-1)^{2}+(7-2)^{2}} \\
& =\sqrt{2^{2}+5^{2}} \\
& =\sqrt{4+25}=\sqrt{29}
\end{aligned}
$$

2. Find distance (length)
(a) $\mathrm{A}(1,4), \mathrm{B}(3,8)$
(b) $\mathrm{P}(2,3), \mathrm{Q}(10,12)$
(c) $\mathrm{O}(0,0), \mathrm{P}(7,8)$
(d) $\mathrm{P}(-2,-1),(1,4)$
3. The three vertices of a parallalogram PQRS are $\mathrm{P}(-3,2), \mathrm{Q}(2,7), \mathrm{S}(1,9)$. Find the length of the diagonal PR.

STATISTICS

1. Find mean and median.
(a) $135,120,148,153,124,122,150,147$
(b) $38,43,24,42,33,46,29$
(c) $34,44,32,41,38,46,45,40$
(d) $37.5,47.5,30,35,50,32.5,42.5,45$
2. Find median

(a) | Wage | No. |
| :---: | :---: |
| 5000 | 3 |
| 6000 | 7 |
| 7000 | 8 |
| 8000 | 5 |
| 9000 | 5 |
| 10000 | 4 |
| 11000 | 3 |

(b)

Age	No.
12	5
13	8
14	7
15	10
16	6
17	4

(c)

Wage	No.
225	4
250	7
270	9
300	5
350	3
400	2

(d)

Wage	No.
$0-50$	3
$50-100$	5
$100-150$	14
$150-200$	12
$200-250$	6
$250-300$	3

(e)

Mark	No.
$0-10$	5
$10-20$	8
$20-30$	10
$30-40$	7
$40-50$	5

(f)

Wage	No.
$200-300$	3
$300-400$	7
$400-500$	10
$500-600$	8
$600-700$	4
$700-800$	3

POLYNOMIALS

1. Find the reminder when $5 x^{2}+7 x+1$ is divided by $(x-2)$.

$$
\mathrm{P}(x)=5 x^{2}+7 x+1
$$

$(x-2)$

$$
\begin{aligned}
& \mathrm{P}(2)=5(2)^{2}+7(2)+1=5 \times 4+7 \times 2+1=20+14+1 \\
& \mathrm{P}(2)=35
\end{aligned}
$$

$$
==
$$

2. Find reminder when $\mathrm{P}(x)=3 x^{2}+4 x+2$ is divided by $(x+1)$.

$$
\begin{aligned}
& \quad \mathrm{P}(x)=3 x^{2}+4 x+2 \\
& (x+1) \\
& \mathrm{P}(-1)=3(-1)^{2}+4(-1)+2=3 \times 1+4(-1)+2 \\
& \mathrm{P}(-1)=3-4+2=1
\end{aligned}
$$

3. Check whether $(x-1)$ is a factor of $x^{3}-3 x^{2}+7 x-1$.

$$
\mathrm{P}(x)=x^{3}-3 x^{2}+7 x-1
$$

$(x-1)$

$$
\begin{aligned}
& \mathrm{P}(1)=(1)^{3}-3(1)^{2}+7(1)-1=1-3+7-1=4 \\
& \mathrm{P}(1)=4
\end{aligned}
$$

$(x-1)$ not a factor
4. $(x-2)$ is a factor of $K x^{2}-4 x+1$. Find the value of K ?

$$
\begin{aligned}
(x-2) \quad \mathrm{P}(x)= & \mathrm{K} x 2-4 x+1 \quad(x-2) \text { is factor } \quad \therefore \mathrm{P}(2)=0 \\
\mathrm{P}(2)= & \mathrm{K}(2)^{2}-4(2)+1=0 \\
\mathrm{P}(2)= & 4 \mathrm{~K}-8+1=0 \\
= & 4 \mathrm{~K}-7=0 \\
& 4 \mathrm{~K}=7, \quad \mathrm{~K}=\frac{7}{4}
\end{aligned}
$$

