Reg No :

SECOND YEAR HIGHER SECONDARY MODEL EXAMINATION

Part III

Time:2Hours

 $(1 \times 5 = 5)$

MATHEMATICS

Cool-off time:15 minutes Maximum:60 scores

General Instructions to Candidates :

- There is a Cool-off time of 15 minutes in addition to the writing time.
- Use the Cool-off time to get familiar with questions and to plan your answers.
- Read questions carefully before answering.
- Read the instructions carefully.
- Calculations, figures and graphs should be shown in the answer sheet itself.
- Give equations wherever necessary.
- Electronic devices except non-programmable calculators are not allowed in the Examination Hall.

PART-1

A. Answer any five questions from 1 to 9 each carries 1 score.

1. The function $f: R \to R$ defined by f(x) = x. Find f(f(x))

Solution: f(f(x) = f(x) = x

2. Find the value of $cos(sec^{-1}x + cosec^{-1}x)$

Solution: $cos(\frac{\pi}{2}) = 0$

3. Let a be a square matrix of order 3×3 , then which among the following is the value of |kA|

Solution: $k^3|A|$

4. The rate of change of area of a circle with respect to radius, when the radius 6 cm is

Solution: Area
$$A = \pi r^2$$
,
 $\frac{dA}{dr} = 2\pi r$ at $r=6 \implies \frac{dA}{dr} = 12\pi$

5. Write the value of the definite integral $\int_{\pi/2}^{\pi/2} sinxdx$

Solution: sinx is an odd function $\therefore \int_{-\pi/2}^{\pi/2} sinx dx = 0$

6. Write the degree of the differential equation $\frac{d^2y}{dx^2} + y = 0$

Solution: 1

7. if $\vec{a}=2\hat{i}+\hat{j}+3\hat{k}$ and $\vec{b}=8\hat{i}+4\hat{j}+12\hat{k}$, then $\vec{a}\times\vec{b}$ is

Solution: Here both vectors are parallel so cross product is zero

8. The Cartesion equation of a line is $\frac{x}{2} = \frac{y}{2} = \frac{z}{2}$. write the corresponding vector equation.

Solution: $\vec{r} = \lambda(2\hat{i} + 4\hat{j} + 2\hat{k})$

9. If $A\subset B$, then the value of P(B/A) is

Solution:
$$P(B/A) = \frac{P(A \cap B)}{P(A)} = \frac{P(A)}{P(A)} = 1$$

B. Answer all questions from 10 to 13 each carries 1 score.(Nonfocus area)

 $(1 \times 4 = 4)$

10. Write the principal value of $\sin^{-1}\frac{1}{2}$.

Solution: $\frac{\pi}{6}$

11. If a is a singular matrix , then the value of |A| is

Solution: 0

12. $y = e^{\log x}$, find $\frac{dy}{dx}$.

Solution: $y = e^{\log x} = x$, then $\frac{dy}{dx} = 1$

13. If l,m,n are direction cosines of a line in space then $l^2 + m^2 + n^2$ is

Solution: $l^2 + m^2 + n^2 = 1$

PART-II

A. Answer any two questions from 14 to 17 each carries 2 score. (Focus area) $(2 \times 2 = 4)$

14. Construct a 2 × 2 matrix $A = [a_{ij}]$ whose elements are given by $a_{ij} = 2i - j$

Solution: $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 3 & 2 \end{bmatrix}$

15. Find the intervals in which the function f given by $f(x) = x^2 - 4x + 6$ is strictly increasing.

Solution: Given $f(x) = x^2 - 4x + 6$ then f'(x) = 2x - 4, f(x) is strictly increasing in which $f'(x) > 0 \implies 2x - 4 > 0 \implies x > 2$ $\therefore f(x)$ is strictly increasing in $(2, \infty)$

16. Find equation of normal to the curve $y = x^3$ at (1, 1)

Solution: $y = x^3 \implies \frac{dy}{dx} = 3x^2$ Slope of the tangent at (1,1)=3 \therefore slope of normal $=-\frac{1}{3}$ \therefore equation of normal $y - 1 = -\frac{1}{3}(x-1)$ $\implies x + 3y - 4 = 0$

17. Form the differential equation corresponding to family of straight lines y=mx where m is an arbitrary constant

Solution: y = mx differentiating $\frac{dy}{dx} = m$. Differential equation is $y = \frac{dy}{dx}x$

B. Answer any two questions from 18 to 20 each carries 2 score. (Nonfocus area) $(2 \times 2 = 4)$

18. Find
$$\frac{dy}{dx}$$
 if $x - y = \pi$

Solution: $x - y = \pi \implies 1 - \frac{dy}{dx} = 0$ $\therefore \frac{dy}{dx} = 1$

19. Solve the differential equation $\frac{dy}{dx} = \frac{x+y}{x}$.

Solution: $\frac{dy}{dx} = \frac{x+y}{x}$ $\frac{dy}{dx} = 1 + \frac{y}{x}$ $\frac{dy}{dx} - \frac{y}{x} = 1$ integrating factor $e^{\int -1/x} = 1/x$ General solution $\frac{y}{x} = \int 1/x \implies \frac{y}{x} = \log|x| + c$

20. Show that the vectors $\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}$, $\vec{b} = -2\hat{i} + 3\hat{j} - 4\hat{k}$ and $\vec{c} = \hat{i} - 3\hat{j} + 5\hat{k}arecoplanar$

Solution: vectors are coplanar then $\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} = 0 \implies \begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} = \begin{vmatrix} 1 & -2 & 3 \\ -2 & 3 & -4 \\ 1 & -3 & 5 \end{vmatrix} = 0$ \therefore vectors are coplanar

PART-III

A. Answer any three questions from 21 to 24 each carries 3 score. (Focus area) $(3 \times 3 = 9)$

21. Show that the relation R in the set $\{1, 2, 3\}$ given by $R = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 3)\}$ is reflexive but neither symmetric nor transitive.

Solution:

Every elements are related to itself \therefore R is reflexiive $(1,2) \in R$ bt $(2,1) \notin R$ so R is not symmetric $(1,2), (2,3) \in R$ but $(1,3) \notin R$ so R is not transitive.

22. If $A = \begin{bmatrix} 3 & -2 \\ 4 & -2 \end{bmatrix}$ and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ Find K so that $A^2 = KA - 2I$

Solution: Given
$$A = \begin{bmatrix} 3 & -2 \\ 4 & -2 \end{bmatrix}$$
 and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ so $A^2 = \begin{bmatrix} 3 & -2 \\ 4 & -2 \end{bmatrix} \begin{bmatrix} 3 & -2 \\ 4 & -2 \end{bmatrix} = \begin{bmatrix} 1 & -2 \\ 4 & -4 \end{bmatrix}$
. $KA - 2I = \begin{bmatrix} 3k - 2 & -2k \\ 4k & -2k - 2 \end{bmatrix}$ $\therefore k = 1$

23. Find the area of the parallelogram whose adjacent sides are given by the vectors $\vec{a} = 3\hat{i} + \hat{j} + 4\hat{k}$ and $\vec{b} = \hat{i} - \hat{j} + \hat{k}$.

Solution: Area of the parallelogram
$$= |\vec{a} \times \vec{b}|$$
, $\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 1 & 4 \\ 1 & -1 & 1 \end{vmatrix} = 5\hat{i} + \hat{j} - 4\hat{k}$
 \therefore area $|\vec{a} \times \vec{b}| = \sqrt{42}$

24. Probability of solving specific problem independently by A and B are $\frac{1}{2}$ and $\frac{1}{3}$ respectively. If both try to solve the problem independently .Find the probability that exactly one of them solve the problem

Solution:

$$\begin{split} \mathbf{P}(\text{exacly one of them solve the problem }) &= P(A \cap \overline{B}) + P(\overline{A} \cap B) \\ &= P(A).P(\overline{B}) + P(\overline{A}).P(B) = \frac{1}{2} \times \frac{2}{3} + \frac{1}{2} \times \frac{1}{3} = \frac{3}{6} = \frac{1}{2} \end{split}$$

B. Answer any two questions from 25 to 27 each carries 3 score. (Nonfocus area) $(3 \times 2 = 6)$

25. Consider the binary operation \land on the set $\{1, 2, 3, 4, 5\}$ defined by $a \land b = \min\{a, b\}$. write the operation table of \land

Solution:	\wedge	1	2	3	4	5
	1	1	1	1	1	1
	2	1	2	2	2	2
	3	1	2	3	3	3
	4	1	2	3	4	4
	5	1	2	3	4	5

26. By using elementary operation, Find the inverse of the matrix $A = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$

Solution:
$$A.A^{-1} = I \implies \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix} .A^{-1} = I$$

 $R_2 \to R_2 - 2.R_1 \implies$
 $\begin{bmatrix} 1 & 2 \\ 0 & -5 \end{bmatrix} .A^{-1} = \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$
 $R_2 \to R_2 \times -\frac{1}{5} \implies \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} .A^{-1} = \begin{bmatrix} 1 & 0 \\ \frac{2}{5} & \frac{-1}{5} \end{bmatrix}$
 $R_1 \to R_1 - 2R_2 \implies \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} .A^{-1} = \begin{bmatrix} \frac{1}{5} & \frac{2}{5} \\ \frac{2}{5} & \frac{-1}{5} \end{bmatrix} \implies A^{-1} = \begin{bmatrix} \frac{1}{5} & \frac{2}{5} \\ \frac{2}{5} & \frac{-1}{5} \end{bmatrix}$

27. Find $\int_0^2 x^2 dx$ as limit of infinite sum .

Solution:
$$\int_{0}^{2} x^{2} dx = \lim_{h \to 0} h\{f(0) + f(h) + f(h^{2}) + \dots + f((n-1)h^{2})\}; h = \frac{2}{n}$$
$$\implies I = \lim_{h \to 0} h\{h^{2}\} + 4h^{2} + 9h^{2} + \dots + f((n-1)^{2}h^{2})\}$$
$$\implies I = \lim_{h \to 0} h^{3}\{1\} + 2^{2} + 3^{2} + \dots + ((n-1)^{2})\}$$
$$= \lim_{n \to \infty} \frac{8}{n^{3}} \frac{(n-1)n(2(n-1)+1)}{6} = \frac{16}{6} = \frac{8}{3}$$

PART-IV

A. Answer any 3 questions from 28 to 31 each carries 4 score.(Focus area) $(4 \times 3 = 12)$

28. Show that: i) $tan^{-1}\frac{1}{2} + tan^{-1}\frac{2}{11} = tan^{-1}\frac{3}{4}$ ii) $cos^{-1}(4x^3 - 3x) = 3cos^{-1}x, x \in \left[\frac{1}{2}, 1\right]$

Solution:
i)
$$tan^{-1}\frac{1}{2} + tan^{-1}\frac{2}{11} = tan^{-1}\frac{\frac{1}{2} + \frac{2}{11}}{1 - (\frac{1}{2} \times \frac{2}{11})} = tan^{-1}\frac{15}{20} = tan^{-1}\frac{3}{4}$$

ii) put $x = cos\theta$ then $cos^{-1}(4x^3 - 3x) = cos^{-1}cos(3\theta) = 3\theta = 3cos^{-1}x$

29. Verify Mean value theorem for the function $f(x) = x^2$ in the interval [2, 4].

Solution:
$$f(a)=f(2)=4$$
 and $f(b)=f(4)=16$
 $f'(x) = 2x \implies f'(c) = 2c$
by L.M.V.T $f'(c) = 2c = \frac{16-4}{4-2} = 6 \implies c = 3 \in [2,4]$ hence verified

30. Find the area of the region bounded by the curve $y^2 = x$ and the line x=1 and x=4 and the x axis and the first quadrant

Solution: Area =
$$\int_1^4 \sqrt{x} = \left[\frac{x^{3/2}}{3/2}\right]_1^4 = \frac{16}{3} - \frac{2}{3} = \frac{14}{3}$$

31. Find the shortest distance between the lines whose vector equations are $\vec{r} = \hat{i} + \hat{j} + \hat{k} + \lambda(2\hat{i} - \hat{j} + \hat{k})$ and $\vec{r} = 2\hat{i} - \hat{j} - \hat{k} + \mu(3\hat{i} - 5\hat{j} + 2\hat{k})$

Solution:
$$d = |\frac{(\vec{a}_2 - \vec{a}_1).(b_1 \times b_2)}{|b_1 \times b_2|}|$$

 $\vec{a}_2 - \vec{a}_1 = \hat{i} - 2\hat{j} - 2\hat{k} \text{ and } (b_1 \times b_2) = 3\hat{i} - \hat{j} - 7\hat{k} \implies d = \frac{19}{\sqrt{59}}$

B. Answer any one questions from 32 to 33 each carries 4 score. (Nonfocus area) $(4 \times 1 = 4)$

32. Random variable X has following probability distribution

X	0	1	2	3	4					
P(x)	0.1	k	2k	2k	k					
i) Find the value of k										
ii)Find $P(X < 3)$										

Solution: i) $\sum P(X) = 1 \implies 6k + 0.1 = 1 \therefore k = \frac{0.9}{6} = 0.15$ ii)P(X < 3) = 0.1 + 0.15 + 0.3 = 0.55

33. Find the cartesion and vector equation of the plane with intercepts 2,3,4 on the x ,y ,z axis respectively .

Solution: Equation of plane , Cartesion form $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1 \implies \frac{x}{2} + \frac{y}{3} + \frac{z}{4} = 1$ ie, 6x + 4y + 3z - 1 = 0. vector form is $\vec{r} \cdot (6\hat{i} + 4\hat{j} + 3\hat{k}) = 1$

PART-V

A. Answer any two questions from 34 to 36 each carries 2 score. (Focus area) $(6 \times 2 = 12)$

34. Solve the following system of equations by matrix method

3x - 2y + 3z = 8. 2x + y - z = 1. 4x - 3y + 2z = 4

Solution:
$$3x - 2y + 3z = 8$$

 $2x + y - z = 1$
 $4x - 3y + 2z = 4$
 $\Rightarrow \begin{bmatrix} 3 & -2 & 3 \\ 2 & 1 & -1 \\ 4 & -3 & 2 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 8 \\ 1 \\ 4 \end{bmatrix}$ ie, AX= B form
 $|A| = -17$ and $adj(A) = \begin{bmatrix} -1 & -5 & -1 \\ -8 & -6 & 9 \\ -10 & 1 & 7 \end{bmatrix}$
 $X = A^{-1}B \implies X = \frac{-1}{17} \begin{bmatrix} -1 & -5 & -1 \\ -8 & -6 & 9 \\ -10 & 1 & 7 \end{bmatrix} \cdot \begin{bmatrix} 8 \\ 1 \\ 4 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$
 $\cdot \qquad x = 1, y = 2, z = 3$

35. Solve the following linear programing problem graphically : Maximise Z = 4x + y subject to the constraints $x + x \le 50$, $3x + y \le 90$, $x \ge 0$, $y \ge 0$.

Maximum Z = 120 at (30,0)

36. Find :

$$\mathrm{i})\int \frac{\sin(\tan^{-1}x)}{1+x^2}dx \qquad \qquad \mathrm{ii})\int_0^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}}dx \qquad \qquad \mathrm{iii})\int \frac{dx}{x^2 - 16}dx$$

Solution:
i)
$$tan^{-1}x = t \implies \frac{1}{1+x^2}dx = dt$$

 $\int \frac{sin(tan^{-1}x)}{1+x^2}dx = \int sintdt = -cost = -cos(tan^{-1}x)$ ii)Let $I = \int_0^{\frac{\pi}{2}} \frac{\sqrt{sinx}}{\sqrt{sinx} + \sqrt{cosx}}dx$
Unig property $I = \int_0^{\frac{\pi}{2}} \frac{\sqrt{cosx}}{\sqrt{cosx} + \sqrt{sinx}}dx$
 $\therefore 2I = \int_0^{\frac{\pi}{2}}dx = \frac{\pi}{2} \implies I = \frac{\pi}{4}$
iii) $\int \frac{dx}{x^2 - 16} = \frac{1}{2 \times 4}log\frac{x-4}{x+4} + c$