Č	ime : 3 Hrs + 15 Min lass / Subject : X - I		<u>020 – Model Quesiton Pa</u>	per Date : Maximum Marks : 100
ISW	er All The Question	ç ·	<u>PART – A</u>	14X1=14
	-			4.2).
1.			s a prime number less th	
2	· · · · ·		c) $\{4,9,25,49,121\}$	
2		b) $(2, -1)$		+ β then the values of α and d) (1,2)
3	The sequence -3 , $-$,	(-1, -2)	u) (1,2)
5.	-		c) neither A.P nor G.P	d) both A P and G P
1	•	2k = 90, then the value		
ч.	a) 8	b) 9	c) 10	d) 11
5	The LCM of $x^3 - a$	/	c) 10	u) 11
5.			c) $(x-a)^2(x^2+ax+a^2)$	d) $(x-a)^2(x^2+ax+a^2)$
6	The solution of x^2		c) (x u) (x + ux + u)	u) (x u) (x u u)
0.			ts c) real and unequal roo	ots d) imaginary roots
7.	·	· -	· -	nd $DC = 3 \ cm$, the length of
	m a m i b o , i i b i o ,			
	the side AC is	,	,,	,
	the side AC is a) 6 <i>cm</i>			
8.	a) 6 <i>cm</i>	b) 4 <i>cm</i>	c) 3 <i>cm</i>	d) 8 <i>cm</i>
8.	a) 6 <i>cm</i> If (5,7), (3, <i>p</i>) and	b) 4 <i>cm</i> (6,6) are collinear, then	c) 3 <i>cm</i> the value of p is	d) 8 <i>cm</i>
	a) 6 <i>cm</i> If (5,7), (3, <i>p</i>) and a) 3	b) 4 <i>cm</i> (6,6) are collinear, then b) 6	c) 3 <i>cm</i> the value of p is c) 9	d) 8 <i>cm</i> d) 12
	 a) 6 cm If (5,7), (3, p) and a) 3 The equation of a li 	b) 4 <i>cm</i> (6,6) are collinear, then b) 6 ne passing through the c	c) 3 <i>cm</i> the value of p is c) 9 origin and perpendicular to	d) 8 <i>cm</i> d) 12 the line $7x - 3y + 4 = 0$ is
9.	a) $6 cm$ If (5,7), (3, p) and (3) a) 3 The equation of a li a) $7x - 3y + = 0$	b) 4 <i>cm</i> (6,6) are collinear, then b) 6 ine passing through the c b) $3x - 7y + 4 = 0$	c) 3 <i>cm</i> the value of p is c) 9	d) 8 <i>cm</i> d) 12 the line $7x - 3y + 4 = 0$ is
9.	a) $6 cm$ If (5,7), (3, p) and (3, p) a) 3 The equation of a li a) $7x - 3y += 0$ $\frac{\sin(90-\theta)\sin\theta}{\tan\theta} + \frac{\cos(\theta)}{\cos\theta}$	b) 4 cm (6,6) are collinear, then b) 6 ine passing through the c b) $3x - 7y + 4 = 0$ $\frac{90-\theta)\cos\theta}{\cot\theta} =$	c) 3 cm the value of p is c) 9 origin and perpendicular to c) $3x + 7y = 0$	d) 8 <i>cm</i> d) 12 the line $7x - 3y + 4 = 0$ is d) $7x - 3y = 0$
9. 10	a) $6 cm$ If (5,7), (3, p) and (3) a) 3 The equation of a li a) $7x - 3y += 0$ $\frac{\sin(90-\theta)\sin\theta}{\tan\theta} + \frac{\cos(\theta)}{\cos\theta}$ a) $\tan\theta$	b) 4 cm (6,6) are collinear, then b) 6 ine passing through the c b) $3x - 7y + 4 = 0$ $\frac{90-\theta)\cos\theta}{\cot\theta} =$ b) 1	c) 3 <i>cm</i> the value of p is c) 9 origin and perpendicular to c) $3x + 7y = 0$ c) -1	d) 8 cm d) 12 the line $7x - 3y + 4 = 0$ is d) $7x - 3y = 0$ d) sin θ
9. 10	a) $6 \ cm$ If $(5,7), (3, p)$ and a a) 3 The equation of a li a) $7x - 3y += 0$ $\frac{\sin(90-\theta)\sin\theta}{\tan\theta} + \frac{\cos(\theta)}{\cos\theta}$ a) $\tan\theta$. A spherical ball of a	b) 4 cm (6,6) are collinear, then b) 6 ine passing through the c b) $3x - 7y + 4 = 0$ $\frac{90-\theta)\cos\theta}{\cot\theta} =$ b) 1	c) 3 cm the value of p is c) 9 origin and perpendicular to c) $3x + 7y = 0$	d) 8 cm d) 12 the line $7x - 3y + 4 = 0$ is d) $7x - 3y = 0$ d) sin θ
9. 10	a) $6 \ cm$ If $(5,7), (3,p)$ and θ a) 3 The equation of a lifted in the equatio	b) 4 cm (6,6) are collinear, then b) 6 ine passing through the c b) $3x - 7y + 4 = 0$ $\frac{90-\theta)\cos\theta}{\cot\theta} =$ b) 1 radius r ₁ units is melted to	c) 3 <i>cm</i> the value of p is c) 9 origin and perpendicular to c) $3x + 7y = 0$ c) -1 to make 8 new identical bal	d) 8 cm d) 12 the line $7x - 3y + 4 = 0$ is d) $7x - 3y = 0$ d) sin θ lls each of radius r_2 units.
9. 10 11	a) $6 \ cm$ If $(5,7), (3, p)$ and θ a) 3 The equation of a li a) $7x - 3y += 0$ $\frac{\sin(90-\theta)\sin\theta}{\tan\theta} + \frac{\cos(\theta)}{\cos\theta}$ a) $\tan\theta$ A spherical ball of θ Then $r_1 : r_2$ is a) $2 : 1$	b) 4 cm (6,6) are collinear, then b) 6 ine passing through the c b) $3x - 7y + 4 = 0$ $\frac{90 - \theta) \cos \theta}{\cot \theta} =$ b) 1 radius r_1 units is melted t b) 1 : 2	c) 3 <i>cm</i> the value of p is c) 9 origin and perpendicular to c) $3x + 7y = 0$ c) -1 to make 8 new identical bal c) $4 : 1$	d) 8 cm d) 12 the line $7x - 3y + 4 = 0$ is d) $7x - 3y = 0$ d) sin θ
9. 10 11	a) $6 \ cm$ If $(5,7), (3, p)$ and θ a) 3 The equation of a li a) $7x - 3y += 0$ $\frac{\sin(90-\theta)\sin\theta}{\tan\theta} + \frac{\cos(\theta)}{\cos\theta}$ a) $\tan\theta$ A spherical ball of π Then $r_1 : r_2$ is a) $2 : 1$ If the volume of spl	b) 4 cm (6,6) are collinear, then b) 6 ine passing through the c b) $3x - 7y + 4 = 0$ $\frac{90-\theta}{\cos\theta} =$ b) 1 radius r_1 units is melted t b) 1 : 2 here is $36\pi cm^3$, then its	c) 3 <i>cm</i> the value of p is c) 9 origin and perpendicular to c) $3x + 7y = 0$ c) -1 to make 8 new identical bal c) $4 : 1$ radius is equal to	d) 8 cm d) 12 the line $7x - 3y + 4 = 0$ is d) $7x - 3y = 0$ d) sin θ lls each of radius r_2 units. d) 1 : 4
9. 10 11 12	a) $6 \ cm$ If $(5,7), (3, p)$ and θ a) 3 The equation of a li a) $7x - 3y += 0$ $\frac{\sin(90 - \theta)\sin\theta}{\tan\theta} + \frac{\cos(\theta)}{\cos\theta}$ a) $\tan\theta$ A spherical ball of θ Then $r_1 : r_2$ is a) $2 : 1$ If the volume of spl a) $3 \ cm$	b) 4 cm (6,6) are collinear, then b) 6 ine passing through the c b) $3x - 7y + 4 = 0$ $\frac{90-\theta)\cos\theta}{\cot\theta} =$ b) 1 radius r_1 units is melted t b) 1 : 2 here is $36\pi cm^3$, then its b) 2 cm	c) 3 <i>cm</i> the value of p is c) 9 origin and perpendicular to c) $3x + 7y = 0$ c) -1 to make 8 new identical bal c) $4 : 1$	d) 8 cm d) 12 the line $7x - 3y + 4 = 0$ is d) $7x - 3y = 0$ d) sin θ lls each of radius r_2 units.
9. 10 11 12	a) $6 \ cm$ If $(5,7), (3, p)$ and θ a) 3 The equation of a li a) $7x - 3y += 0$ $\frac{\sin(90-\theta)\sin\theta}{\tan\theta} + \frac{\cos(\theta)}{\cos\theta}$ a) $\tan\theta$ A spherical ball of θ Then $r_1 : r_2$ is a) $2 : 1$ If the volume of sphalent of r_1 a) $3 \ cm$ The range of first 10	b) 4 cm (6,6) are collinear, then b) 6 ine passing through the c b) $3x - 7y + 4 = 0$ $\frac{90-\theta)\cos\theta}{\cot\theta} =$ b) 1 radius r_1 units is melted t b) 1 : 2 here is $36\pi cm^3$, then its b) 2 cm 0 prime number is	c) 3 cm the value of p is c) 9 origin and perpendicular to c) $3x + 7y = 0$ c) -1 to make 8 new identical bal c) $4 : 1$ radius is equal to c) 5 cm	d) 8 cm d) 12 the line $7x - 3y + 4 = 0$ is d) $7x - 3y = 0$ d) sin θ lls each of radius r_2 units. d) 1 : 4 d) 10 cm
 9. 10 11 12 13 	a) $6 \ cm$ If $(5,7), (3, p)$ and θ a) 3 The equation of a li a) $7x - 3y += 0$ $\frac{\sin(90 - \theta)\sin\theta}{\tan\theta} + \frac{\cos(\theta)}{\cos\theta}$ a) $\tan\theta$ A spherical ball of θ Then $r_1 : r_2$ is a) $2 : 1$ If the volume of spl a) $3 \ cm$ The range of first 10 a) 9	b) 4 cm (6,6) are collinear, then b) 6 ine passing through the c b) $3x - 7y + 4 = 0$ $\frac{90-\theta)\cos\theta}{\cot\theta} =$ b) 1 radius r_1 units is melted the b) 1 : 2 here is $36\pi cm^3$, then its b) 2 cm 0 prime number is b) 20	c) 3 cm the value of p is c) 9 origin and perpendicular to c) $3x + 7y = 0$ c) -1 to make 8 new identical bal c) $4 : 1$ radius is equal to c) $5 cm$ c) 27	d) 8 cm d) 12 the line $7x - 3y + 4 = 0$ is d) $7x - 3y = 0$ d) sin θ lls each of radius r_2 units. d) 1 : 4 d) 10 cm d) 5
 9. 10 11 12 13 	a) $6 \ cm$ If $(5,7), (3, p)$ and θ a) 3 The equation of a li a) $7x - 3y += 0$ $\frac{\sin(90 - \theta)\sin\theta}{\tan\theta} + \frac{\cos(\theta)}{\cos\theta}$ a) $\tan\theta$ A spherical ball of θ Then $r_1 : r_2$ is a) $2 : 1$ If the volume of spl a) $3 \ cm$ The range of first 10 a) 9	b) 4 cm (6,6) are collinear, then b) 6 ine passing through the c b) $3x - 7y + 4 = 0$ $\frac{90-\theta)\cos\theta}{\cot\theta} =$ b) 1 radius r_1 units is melted the b) 1 : 2 here is $36\pi cm^3$, then its b) 2 cm 0 prime number is b) 20	c) 3 cm the value of p is c) 9 origin and perpendicular to c) $3x + 7y = 0$ c) -1 to make 8 new identical bal c) $4 : 1$ radius is equal to c) $5 cm$ c) 27	d) 8 cm d) 12 the line $7x - 3y + 4 = 0$ is d) $7x - 3y = 0$ d) sin θ lls each of radius r_2 units. d) 1 : 4 d) 10 cm

<u> PART – B</u>

10x2=20

Answer Any 10 Questions : (Q.No 28 is compulsory).

- 15. Let $A = \{1,2,3, \dots 100\}$ and R be the relation defined as " is cube of " on A. Find the domain and range of R.
- 16. If $f(x) = x^2 1$, g(x) = x 2, find "a" if $g \circ f(a) = 1$.

- 17 If 3 + k, 18 k, 5k + 1 are in A P, then find k.
- 18. Find the sum of $1 + 3 + 5 + \dots + 55$.
- 19. The product of Kumaran's age(in years) two years ago and four years from now is one more than twice his present age. What is his present age?
- 20. If the difference between a number and its reciprocal is $\frac{24}{5}$, find the number.
- 21. If $A = \begin{bmatrix} 0 & 4 & 9 \\ 8 & 3 & 7 \end{bmatrix}$ and $\begin{bmatrix} 7 & 3 & 8 \\ 1 & 4 & 9 \end{bmatrix}$, find the value of 3A 9B.
- 22. In the figure, AD is the bisector of $\angle BAC$, if AB = 10cm, AC = 14cm, and BC = 6cm. Find BD and DC.
- 23. Find the slope of a line joining the points $(\sin \theta, -\cos \theta)$ and $(-\sin \theta, \cos \theta)$.
- 24. Prove that $\frac{\cot A \cos A}{\cot A + \cos A} = \frac{\csc A 1}{\csc A + 1}$
- 25 The volumes of two cones of same base radius are 3600*cm*³ and 5040*cm*³ Find the ratio of the heights.
- 26. The mean of a data is 25.6 and its coefficient of variation is 18.75. Find the standard deviation.
- 27. *A* and *B* are two candidates seeking admission to IIT. The probability that A getting selected is 0.5 and the probability that both *A* and *B* getting selected is 0.3. Prove that the probability of *B* being selected is at most 0.8.
- 28 The line through the points (-2,6) and (4,8) is perpendicular to the line through the points (8,12) and (x, 24). Find the value of x.

<u> PART – C</u>

Answer Any 10 Questions : (Q.No 42 is compulsory).

29. Let $A = \{x \in W / x < 2\}, B = \{x \in N / 1 < x \le 4\}$ and $C = \{3,5\}$. Verify that $(A \cup B) \times C = (A \times C) \cup (B \times C)$

30. An object travels under the influence of gravity in time t seconds is given by $S(t) = \frac{1}{2}gt^2 + at + b$. where (g is the acceleration due to gravity). a, b are the constants Check if the function S(t) is one – one.

- 31. Find the sum of the geometric series $3 + 6 + 12 + \dots + 1536$.
- 32. Rekha has 15 square colour papers of sizes 10*cm*, 11*cm*, 12*cm*, ... 24*cm*. How much area can be decorated with these colour papers?
- 33. Solve the system of linear equations in three variables :
 - x + y + z = 5, 2x y + z = 9, x 2y + 3z = 16.
- 34. If the roots of the equation $(c^2 ab)x^2 2(a^2 bc)x + b^2 ac = 0$ are real and equal. Prove that either a = 0 or $a^3 + b^3 + c^3 = 3abc$.

35. If
$$A = \begin{pmatrix} 1 & 1 \\ -1 & 3 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 2 \\ -4 & 2 \end{pmatrix}$, $C = \begin{pmatrix} -7 & 6 \\ 3 & 2 \end{pmatrix}$ verify that $A(B + C) = AB + AC$.

- 36. State and prove Pythagoras theorem.
- 37. Find the equation of a straight line joining the point of intersection of 3x + y + 2 = 0 and x 2y 4 = 0 to the point of intersection of 7x 3y = -12 and 2y = x + 3.
- 38. From the top of a rock $50\sqrt{3} m$ high, the angle of depression of a car on the ground is observed to be 30°. Find the distance of the car from the rock.
- 39. A shuttle cock used for playing badminton has the shape of a frustum of a cone is mounted on a hemisphere. The diameter of the frustum are 5cm and 2cm. The height of the entire shuttle cock is 7cm. Find its external surface area.

10x5 = 50

- 40 A metallic sheet in the form of a sector of a circle of radius 21 cm has central angle of 216° The sector is made into a cone by bringing the bounding radii together. Find the volume of the cone formed.
- 41. Find the co-efficient of variation of the data 18,20,15,12,25.
- 42. A card is drawn from a pack of 52 cards. Find the probability of getting a Queen or a diamond or a black card.

<u> PART – D</u>

2x8=16

Answer All The Questions :

- 43. a) Construct a ΔPQR in which $PQ = 8 \ cm$, $\angle R = 60^{\circ}$ and the median RG from R to PQ is 5.8 cm. Find the length of the altitude from R to PQ. **(OR)**
 - b) Draw a circle of diameter 6 *cm* from a point P, which is 8*cm* away from its centre. Draw the two tangents PA and PB to the circle and measure their lengths.

44. a) Draw the graph of $y = 2x^2 - 3x - 5$ and hence solve $2x^2 - 4x - 6 = 0$. (OR) b) Draw the graph of $y = x^2 + x - 2$ and use it to solve $x^2 + x - 2 = 0$.

ALLTHE REST

Prepared By :

K.MOHAN, M.Sc., M.Phill, B.Ed., P.G Assistant in Mathematics, SRK Garden M Hr.Sec.School, Paradarami, Gudiyatham, Vellore (Dt).