MATHEMATICS

SECTION - I

(SINGLE CORRECT CHOICE TYPE)

This section contains 10 multiple choice questions. Each question has 4 choices (A), (B), (C) and (D) for its answer, out of which ONLY ONE is correct

41. Let z be a complex number such that the imaginary part of z is nonzero and and $a = z^2 + z + 1$ is real. Then a connot take the value

b)
$$\frac{1}{3}$$

c)
$$\frac{1}{2}$$

d)
$$\frac{3}{4}$$

Ans. D

Let
$$Z = x + iy$$
 $(y \neq 0)$

$$a = z^2 + z + 1$$
 becomes

$$a = (x+iy)^2 + (x+iy) + 1$$

$$(x^2 - y^2 + x + 1) + i(2xy + y) = a + i0$$

Comparing real & imaginary parts

$$x^2 - y^2 + x + 1 = a$$
 (1)

$$2xy + y = 0 \qquad ----(2)$$

From (2)
$$x = \frac{-1}{2}$$
 as $y \neq 0$

Put value of x in (1)

$$\left(-\frac{1}{2}\right)^2 - y^2 - \frac{1}{2} + 1 = a$$

$$\frac{1}{4} + \frac{1}{2} - y^2 = a$$

$$y^2 = \frac{3}{4} - a > 0$$

$$a < \frac{3}{4}$$

42. If
$$\lim_{x \to \infty} \left(\frac{x^2 + x + 1}{x + 1} - ax - b \right) = 4$$
, then

a)
$$a = 1, b = 4$$

a)
$$a = 1, b = 4$$
 b) $a = 1, b = -4$ c) $a = 2, b = -3$ d) $a = 2, b = 3$

c)
$$a = 2$$
, $b = -1$

d)
$$a = 2, b = 3$$

Ans. B

$$\lim_{x \to \infty} \frac{x^2 + x + 1}{x + 1} - ax - b = 4$$

$$\lim_{x \to \infty} \frac{x^2 (1-a) + x (1-a-b) + 1-b}{x+1} = 4$$

For existense of limit coefficient of $x^2 = 0$

$$1 - a = 0$$

$$a = 1$$

$$\lim_{x \to \infty} \frac{x(1-a-b)+1-b}{1+x} = 4$$

$$1 - a - b = 4$$

$$b = -4$$

43. Let $P = [a_{ij}]$ be a 3×3 matrix and let $Q = [b_{ij}]$, where $b_{ij} = 2^{i+j} a_{ij}$ for $1 \le i, j \le 3$. If the determinant minant of P is 2, then the determinant of the matrix Q is

a)
$$2^{10}$$

b)
$$2^{11}$$

c)
$$2^{12}$$

d)
$$2^{13}$$

Ans. D

as
$$b_{ii} = 2^{i+j} a_{ii}$$

$$b_{11} = 4a_{11}, b_{12} = 8a_{12}, b_{13} = 16a_{13}$$

$$b_{21} = 8a_2, b_{22} = 16a_{22}, b_{23} = 32a_{23}$$

$$b_{31} = 16a_{31}, b_{32} = 32a_{32}, b_{33} = 64a_{33}$$

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = 2$$

$$B = \begin{bmatrix} 4a_{11} & 8a_{12} & 16a_{13} \\ 8a_{21} & 16a_{22} & 32a_{23} \\ 16a_{31} & 32a_{32} & 64a_{33} \end{bmatrix}$$

$$=4\times8\times16\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 2a_{21} & 2a_{22} & 2a_{23} \\ 4a_{31} & 4a_{32} & 4a_{33} \end{bmatrix}$$

$$= 4 \times 8 \times 16 \times 2 \times 4 \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

$$=4\times8\times16\times2\times4\times2$$

$$B = 2^{13}$$

The ellipse $E_1: \frac{x^2}{Q} + \frac{y^2}{4} = 1$ is inscribed in a rectangle R whose sides are parallel to the coordinates axes. Another ellipse E_2 passing through the point (0,4) circumscribes the rectangle R. The eccentricity of the ellipse E₂ is

a)
$$\frac{\sqrt{2}}{2}$$

a)
$$\frac{\sqrt{2}}{2}$$
 b) $\frac{\sqrt{3}}{2}$

c)
$$\frac{1}{2}$$

d)
$$\frac{3}{4}$$

Ans. C

Given Ellipse
$$\frac{x^2}{9} + \frac{y^2}{4} = 1$$

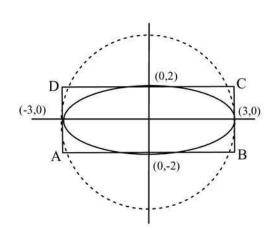
As ellipse is bounded by $x = \pm a \& y = \pm b$

Sides of rectangle are

$$x = \pm 3 \& y = \pm 2$$

$$C(3,2), D(-3,2)$$

$$A(-3,-2), B(3,-2)$$



As new ellipse

Circumscribe the rectangle & passes through (0,4).

Let new ellipse is $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

Passes through $(0,4) \Rightarrow \frac{16}{b^2} = 1 \Rightarrow b^2 = 16$

Passes through (3,2) $\frac{9}{a^2} + \frac{4}{16} = 1$

$$a^2 = 12$$

So, Vertical ellipse $\frac{x^2}{12} + \frac{y^2}{16} = 1$

$$a^2 = b^2 \left(1 - e^2 \right)$$

$$12 = 16(1 - e^2)$$

$$e^2 = 1 - \frac{12}{16} = \frac{1}{4}$$

$$e = \frac{1}{2}$$

45. The function $f:[0,3] \to [1,29]$, defined by $f(x) = 2x^3 - 15x^2 + 36x + 1$ is

a) one-one and onto

b) onto but not one-one

c) one-one but not onto

d) neither one-one nor onto

Ans. B

$$f:[0,3] \to [1,29]$$

$$f(x) = 2x^3 - 15x^2 + 36x + 1$$

$$f'(x) = 6x^2 - 30x + 36$$

$$=6(x-2)(x-3)$$

$$f''(x) = 6(2x-5)$$

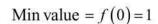
 $\therefore x = 2$ is pt of maxima.

x = 3 is pt of minima.

&
$$f(2) = 29 > 0$$

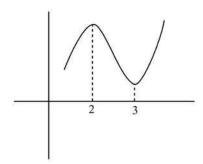
so curve is

 $\therefore f^n$ is not one one



$$Max value = f(2) = 29$$

: so f^n is Onto.



46. The locus of the mid-point of the chord of contact of tangents drawn from points lying on the straight line 4x - 5y = 20 to the circle $x^2 + y^2 = 9$ is

a)
$$20(x^2 + y^2) - 36x + 45y = 0$$

b)
$$20(x^2 + y^2) + 36x - 45y = 0$$

c)
$$36(x^2 + y^2) - 20x + 45y = 0$$

d)
$$36(x^2 + y^2) + 20x - 45y = 0$$

Ans. A

Let
$$P(h,k) & Q(x_1, y_1)$$

As P lies of 4x-5y=20

$$\therefore P\left(h, \frac{4h-20}{5}\right)$$

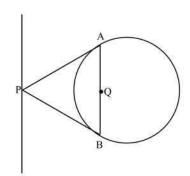
Equation of chord of contact

$$AB \Rightarrow S_1 = 0$$

$$xh + y\left(\frac{4h - 20}{5}\right) = 9$$

$$5xh + y(4h-20) = 45$$
----(1)

Equation of chord AB whose mid point is $Q(x_1, y_1)$



$$xx_1 + yy_1 = x_1^2 + y_1^2$$
 ----(2)

Compare (1) & (2)

$$\frac{5h}{x_1} = \frac{4h - 20}{y_1} = \frac{45}{x_1^2 + y_1^2}$$

$$h = \frac{9x_1}{x_1^2 + y_1^2} \& 4h - 20 = \frac{45y_1}{x_1^2 + y_1^2}$$

On eliminating h

$$\frac{49x_1}{x_1^2 + y_1^2} - 20 = \frac{45y_1}{x_1^2 + y_1^2}$$

$$20(x_1^2 + y_1^2) = 36x_1 - 45y_1$$

: Locus is

$$20(x^2 + y^2) - 36x + 45y = 0$$

47. The point P is the intersection of the straight line joining the points Q (2, 3, 5) and

R (1,-1,4) with the plane 5x-4y-z=1. If S is the foot of the perpendicular drawn from the point T (2,1,4) to QR, then the length of the line segement PS is

a)
$$\frac{1}{\sqrt{2}}$$

b)
$$\sqrt{2}$$

d)
$$2\sqrt{2}$$

Ans. A

Equation of
$$QR \rightarrow \frac{x-1}{1} = \frac{y+1}{4} = \frac{z-4}{1} = \lambda$$

Dr's of QR(1,4,1)

T(2,1,4)

Co-ordinates of $P(1+\lambda, -1+4\lambda, 4+\lambda)$

As P is point of Intersection of QR & given plane, so

$$5(1+\lambda)-4(-1+4\lambda)-(4+\lambda)=1$$

$$\lambda = \frac{1}{3}$$



$$\therefore P\left(\frac{4}{3}, \frac{1}{3}, \frac{13}{3}\right)$$

Let
$$S(1+\mu, -1+4\mu, 4+\mu)$$

Dr's of
$$TS(\mu-1,4\mu-2,\mu)$$

$$TS \perp QR$$
 So,

$$1(\mu-1)+4(4\mu-2)+\mu=0$$

$$\mu = \frac{1}{2}$$

$$\therefore S\left(\frac{3}{2},1,\frac{9}{2}\right)$$

$$\therefore PS = \sqrt{\left(\frac{4}{3} - \frac{3}{2}\right)^2 + \left(1 - \frac{1}{3}\right)^2 + \left(\frac{13}{3} - \frac{9}{2}\right)^2}$$

$$=\frac{1}{\sqrt{2}}$$

48. Let
$$f(x) = \begin{cases} x^2 \left| \cos \frac{\pi}{x} \right|, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
, $x \in \mathbb{R}$, then f is

- a) differentiable both at x = 0 and at x = 2
- b) differentiable at x = 0 but not differentiable at x = 2
- c) not differentiable at x = 0 but differentiable at x = 2
- d) differentiable neither at x = 0 nor at x = 2

Ans. B

$$f(x) = \begin{cases} x^2 \left| \cos \frac{\pi}{x} \right| ; x \neq 0 \\ 0 ; x = 0 \end{cases}$$

$$At x=0$$

$$RRD \Rightarrow \lim_{k \to 0} \frac{f(0+k) - f(0)}{k} = \lim_{k \to 0} \frac{h^2 \cos \frac{\pi}{k} - 0}{k}$$

$$=\lim_{h\to 0}\left(h\cos\frac{\pi}{h}\right)=0$$

$$LHD\Rightarrow \lim_{n\to\infty}\frac{f(0-h)-f(0)}{-h}=\lim_{n\to\infty}\frac{h^2\left[\cos\left(-\frac{\pi}{h}\right)\right]-0}{-h}.$$

$$=\lim_{k\to 0}\left(-k\cos\left(\frac{\pi}{k}\right)\right)=0$$

∴Differentiable at x=0

Atx=2

$$RHD \Rightarrow \lim_{h \to \infty} \frac{f(2+h) - f(2)}{h} = \lim_{h \to \infty} \frac{(2+h)^2}{h} \left[\cos \frac{\pi}{2+h} - 4 \left| \cos \frac{\pi}{2} \right| \right] = \infty$$

$$LHD \Rightarrow \lim_{h \to 0} \frac{f(2-h) - f(2)}{-h} = \lim_{h \to 0} \frac{(2-h)^2 \left| \cos \frac{\pi}{2-h} \right| - 4 \left| \cos \frac{\pi}{2} \right|}{-h} = -\infty$$

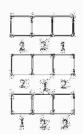
- . Not Differentiable at x=2.
- 49. The total number of ways in which 5 balls of different colours can be distributed among 3 persons so that each person gets at least one ball is

Ans. B

5 Balls to 3 persons, so that all persons get atleast one ball.

Case-I

Total ways



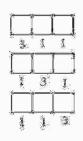
=10×3×1×3=90

Case-II

Total ways

$$= \left({}^{3}C_{3}x^{3}C_{1}x^{3}C_{3}\right) \times 3$$

$$=10 \times 2 \times 1 \times 3 = 60$$



50. The integral $\int \frac{\sec^2 x}{(\sec x + \tan x)^{9/2}} dx$ equals (for some arbitrary constant K)

a)
$$-\frac{1}{(\sec x + \tan x)^{1/2}} \left\{ \frac{1}{11} - \frac{1}{7} (\sec x + \tan x)^2 \right\} + K$$

b)
$$\frac{1}{(\sec x + \tan x)^{11/3}} \left[\frac{1}{11} - \frac{1}{7} (\sec x + \tan x)^7 \right] + K$$

$$\circ) = \frac{1}{\left(\sec x + \tan x\right)^{1/2} \left(11 + \frac{1}{7}(\sec x + \tan x)^{\frac{1}{7}}\right) + K}$$

a)
$$\frac{1}{(\sec x + \tan x)^{1/2}} \left\{ \frac{1}{11} + \frac{1}{7} (\sec x + \tan x)^2 \right\} + K$$

Ams. C

$$\int \frac{\sec x}{(\sec x + \tan x)^{N}} dx$$

Let
$$y \otimes x + \sin x = t$$
 (1)

So,
$$(\sec x \tan x + \sec^2 x) dx = dt$$

$$\sec x \, dx = \frac{dt}{t} - - - - - - (2)$$

$$\sec x - \tan x = \frac{1}{t}$$
 ----(3)

From (1) & (3)

$$\sec x = \frac{1}{2} \left(t + \frac{1}{t} \right)$$

So, Integral becomes

$$\int \frac{\sec x \cdot \sec x}{\left(\sec x + \tan x\right)^{9/2}} dx$$

$$\int \frac{\frac{1}{2} \left(t + \frac{1}{t}\right) dt/t}{t^{\frac{9}{2}}}$$

$$\frac{1}{2} \int \frac{t^2 + 1}{t^{\frac{13}{2}}} dt$$

$$= \frac{1}{2} \left[\int t^{-9/2} dt + \int t^{-13/2} dt \right]$$

$$= \frac{1}{2} \left[\frac{t^{-\frac{7}{2}}}{-\frac{7}{2}} + \frac{t^{-\frac{11}{2}}}{-\frac{11}{2}} \right] + K$$

$$=\frac{t^{-7/2}}{-7}+\frac{t^{-11/2}}{-11}+K$$

$$= -\frac{1}{7(\sec x + \tan x)^{\frac{7}{2}}} - \frac{1}{11(\sec x + \tan x)^{\frac{11}{2}}}$$

$$= -\frac{1}{\left(\sec x + \tan x\right)^{11/2}} \left(\frac{1}{11} + \frac{1}{7} \left(\sec x + \tan x\right)^{2}\right) + K$$

SECTION - II

(MULTIPLE CORRECT CHOICE TYPE)

This section contains 5 multiple choice questions. Each question has 4 choices (A), (B), (C) and (D) for its answer, out of which ONE OR MORE is/are correct

- 51. A ship is fitted with three engines E_1 , E_2 and E_3 . The engines function independently of each other with respective probabilities $\frac{1}{2}$, $\frac{1}{4}$ and $\frac{1}{4}$. For the ship to be operational at least two of its engines must function. Let X denote the event that the ship is operational and let X_1 , X_2 and X_3 denote respectively the events that the engines E_1 , E_2 and E_3 are functioning. Which of the following is (are) true?
 - a) $P[x_1^c \mid X] = \frac{3}{16}$ b) P [Exactly two engines of the ship are functioning $\mid X$] = $\frac{7}{8}$
 - c) $P[X|X_2] = \frac{5}{16}$ d) $P[X|X_1] = \frac{7}{16}$

Ans. B,D

A)
$$\frac{P(X_1^c \cap X)}{P(X)} = \frac{\frac{1}{2} \times \frac{1}{4} \times \frac{1}{4}}{\frac{1}{4}} = \frac{1}{8}$$

$$P(X) = \left(\frac{1}{2} \times \frac{1}{4} \times \frac{3}{4}\right) \times 2 + \left(\frac{1}{2} \times \frac{1}{4} \times \frac{1}{4}\right) \times 2 = \frac{1}{4}$$

B) $P[Exactly two engines of the ship are functioning / X] = \frac{\left(\frac{1}{2} \times \frac{1}{4} \times \frac{3}{4}\right) \times 2 + \frac{1}{2} \times \frac{1}{4} \times \frac{1}{4}}{\frac{1}{4}} = \frac{7}{8}$

C)
$$P(X/X_2) = \frac{P[X_2 \cap X]}{P(X_2)} = \frac{\left(\frac{1}{2} \times \frac{1}{4} \times \frac{3}{4}\right) + \left(\frac{1}{2} \times \frac{1}{4} \times \frac{1}{4}\right) \times 2}{\frac{1}{4}} = \frac{5}{8}$$

D)
$$P(X/X_1) = \frac{P[X \cap X_1]}{P(X_1)} = \frac{\left(\frac{1}{2} \times \frac{1}{4} \times \frac{3}{4}\right) \times 2 + \frac{1}{2} \times \frac{1}{4} \times \frac{1}{4}}{\frac{1}{2}} = \frac{7}{16}$$

Tangents are drawn to the hyperbola $\frac{x^2}{9} - \frac{y^2}{4} = 1$, parallel to the straight line 2x - y = 1. The points of contact of the tangents on the hyperbola are

a)
$$\left(\frac{9}{2\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$$

a)
$$\left(\frac{9}{2\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$$
 b) $\left(-\frac{9}{2\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$ c) $\left(3\sqrt{3}, -2\sqrt{2}\right)$ d) $\left(-3\sqrt{3}, 2\sqrt{2}\right)$

c)
$$(3\sqrt{3}, -2\sqrt{2})$$

d)
$$\left(-3\sqrt{3},2\sqrt{2}\right)$$

Ans. A, B

$$\frac{x^2}{9} - \frac{y^2}{4} = 1$$

Tangent to the hyperbola is of the form

$$y = 2x + \lambda$$

$$\lambda^2 = 9(4) - 4 = 36 - 4 = 32$$

$$\lambda = \pm 4\sqrt{2}$$

Tangent is: $2x - y \pm 4\sqrt{2} = 0$

Point of contact is
$$\left(-\frac{a^2l}{n}, \frac{b^2m}{n}\right) = \left(\frac{9}{2\sqrt{2}}, \frac{1}{\sqrt{2}}\right), \left(-\frac{9}{2\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$$

53. Let S be the area of the region enclosed by $y = e^{-x^2}$, y = 0, x = 0, and x = 1. Then

a)
$$S \ge \frac{1}{e}$$

b)
$$S \ge 1 - \frac{1}{e}$$

c)
$$S \le \frac{1}{4} \left(1 + \frac{1}{\sqrt{e}} \right)$$

a)
$$S \ge \frac{1}{e}$$
 b) $S \ge 1 - \frac{1}{e}$ c) $S \le \frac{1}{4} \left(1 + \frac{1}{\sqrt{e}} \right)$ d) $S \le \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{e}} \left(1 - \frac{1}{\sqrt{2}} \right)$

Ans. A, B, D

$$I = \int_{0}^{1} e^{-x^{2}} dx \ge \int_{0}^{1} e^{-x} dx = 1 - \frac{1}{e}$$

$$I \ge 1 - \frac{1}{e}$$

$$e^{-1} \le e^{-x^2} \le 1$$

$$\int_{0}^{1} e^{-1} dx \le \int_{0}^{1} e^{-x^{2}} dx \le \int_{0}^{1} dx$$

$$\therefore \int_{0}^{1} e^{-x^{2}} dx \ge \frac{1}{e}$$

54. If y(x) satisfies the differential equation $y = y \tan x = 2x \sec x$ and y(0) = 0, then

$$a) \cdot y \left(\frac{\pi}{4}\right) = \frac{\pi^2}{8\sqrt{2}}$$

b)
$$y'\left(\frac{\pi}{4}\right) = \frac{\pi^2}{18}$$

$$v) \ \mathcal{V}\left(\frac{\pi}{3}\right) = \frac{\pi^2}{9}$$

$$(a) \ y \left(\frac{\pi}{4}\right) = \frac{\pi^2}{8\sqrt{2}} \qquad (b) \ y^2 \left(\frac{\pi}{4}\right) = \frac{\pi^2}{18} \qquad (c) \ y \left(\frac{\pi}{3}\right) = \frac{\pi^2}{9} \qquad (d) \ y \left(\frac{\pi}{3}\right) = \frac{4\pi}{3} + \frac{2\pi^2}{3\sqrt{3}}$$

Ans. A.D

$$\frac{dy}{dx} - y \tan x = 2x \sec x$$

General solution is $y(\cos x) = \int (2x \sec x) \cos x \, dx$

$$y = x^{2} \sec x + a \sec x$$

$$0=0+c\Rightarrow c=0$$

$$y = x^2 \sec x$$

$$y\left(\frac{\pi}{4}\right) \approx \frac{\pi^2}{16} \left(\sqrt{2}\right)$$

$$=\frac{x^2}{8\sqrt{2}}$$

$$y\left(\frac{\pi}{3}\right) = \frac{\pi^2}{9} \times 2$$

$$\frac{dy}{dx} = x^2 \sec x \tan x + 2x \sec x.$$

$$y'\left(\frac{n}{3}\right) = \frac{n^2}{9}(2)\sqrt{3} + 2\left(\frac{\pi}{3}\right)2$$

$$=\frac{2\pi^2}{3\sqrt{3}}+\frac{4\pi}{3}$$

55. Let θ , $\phi \in [0, 2\pi]$ be such that

$$2\cos\theta\left(1-\sin\phi\right) = \sin^2\theta\left(\tan\frac{\theta}{2} + \cot\frac{\theta}{2}\right)\cos\phi - 1,$$

$$\tan(2\pi - \theta) > 0 \text{ and } -1 < \sin\theta < -\frac{\sqrt{3}}{2}.$$

Then ϕ cannot satisfy

a)
$$0 < \phi < \frac{\pi}{2}$$

b)
$$\frac{\pi}{2} < \phi < \frac{4\pi}{3}$$

a)
$$0 < \phi < \frac{\pi}{2}$$
 b) $\frac{\pi}{2} < \phi < \frac{4\pi}{3}$ c) $\frac{4\pi}{3} < \phi < \frac{3\pi}{2}$ d) $\frac{3\pi}{2} < \phi < 2\pi$

d)
$$\frac{3\pi}{2} < \phi < 2\pi$$

Ans. A, C, D

$$\tan\left(2\pi-\theta\right) > 0, -1 < \sin\theta < -\frac{\sqrt{3}}{2}$$

$$\Rightarrow \theta \in \left(\frac{3\pi}{2}, \frac{5\pi}{3}\right) \Rightarrow 0 < \cos\theta < \frac{1}{2}$$
 (1)

 $2\cos\theta(1-\sin\phi) = \sin^2\theta(\tan\theta/2 + \cot\theta/2)\cos\phi - 1$

$$\Rightarrow \sin(\theta + \phi) = \cos\theta + \frac{1}{2}$$

$$\Rightarrow \frac{1}{2} < \sin(\theta + \phi) < 1$$
 (from (1))

$$\frac{13\pi}{6} < \theta + \phi < \frac{17\pi}{6}$$

$$\Rightarrow \frac{2\pi}{3} < \phi < \frac{7\pi}{6}$$
 (from (1))

cannot satisfied by A, C, D

SECTION -III

(INTEGERANSWERTYPE)

This section contains 5 questions. The answer to each of the questions is a single digit integer, ranging from 0 to 9. The appropriate bubbles below the respective question numbers in the ORS have to be darkened.

56. Let p (x) be a real polynomial of least degree which has a local maximum at x = 1 and a local minimum at x = 3. If p (1) = 6 and p (3) = 2, then p'(0) is

Ans. 9

$$P(x) = ax^3 + bx^2 + cx + d$$

$$P(1) = 6 \Rightarrow a+b+c+d = 6$$

$$P(3) = 2 \Rightarrow 27a + 9b + 3c + d = 2$$

$$P^{1}(1) = 0 \Rightarrow 3a + 2b + c = 0$$

$$P^{1}(3) = 0 \Rightarrow 27a + 6b + c = 0$$

$$a = 1, b = -6, c = 9$$

$$P^{1}(x) = 3ax^{2} + 2bx + c$$

$$P^{1}(0) = c = 9$$

57. If \vec{a} , \vec{b} and \vec{c} are unit vectors satisfying $|\vec{a} - \vec{b}|^2 + |\vec{b} - \vec{c}|^2 + |\vec{c} - \vec{a}|^2 = 9$, then $|2\vec{a} + 5\vec{b} + 5\vec{c}|$ is

Ans. 3

sol.
$$|\vec{a}| = |\vec{b}| = |\vec{c}| = 1$$

$$\left|\overline{a} - \overline{b}\right|^2 + \left|\overline{b} - \overline{c}\right|^2 + \left|\overline{c} - \overline{a}\right|^2 = 9$$

$$\Rightarrow \overline{a} \cdot \overline{b} + \overline{b} \cdot \overline{c} + \overline{c} \cdot \overline{a} = \frac{-3}{2}$$

$$3 + 2(\overline{a} \cdot \overline{b} + \overline{b} \cdot \overline{c} + \overline{c} \cdot \overline{a}) = 0$$

$$\Rightarrow \left| \overline{a} \right|^2 + \left| \overline{b} \right|^2 + \left| \overline{c} \right|^2 + 2 \left| \overline{a}.\overline{b} + \overline{b}.\overline{c} + \overline{c}.\overline{a} \right| = 0$$

$$\Rightarrow \left| \overline{a} + \overline{b} + \overline{c} \right|^2 = 0$$

$$\Rightarrow \overline{a} + \overline{b} + \overline{c} = \overline{0}$$
 ——(1)

Taking dot product with (1) by $\bar{a}, \bar{b} \& \bar{c}$

then
$$\overline{a}.\overline{b} = \frac{-1}{2}$$
, $\overline{b}.\overline{c} = \frac{-1}{2}$, $\overline{c}.\overline{a} = \frac{-1}{2}$

$$\therefore \left| 2\overline{a} + 5\overline{b} + 5\overline{c} \right| = 3$$

58. The value of
$$6 + \log_{\frac{3}{2}} \left(\frac{1}{3\sqrt{2}} \sqrt{4 - \frac{1}{3\sqrt{2}} \sqrt{4 - \frac{1}{3\sqrt{2}} \sqrt{4 - \frac{1}{3\sqrt{2}} \dots}}} \right)$$
 is

Ans. 4

sol.
$$x = \frac{1}{3\sqrt{2}}\sqrt{4-x}$$

$$3\sqrt{2} \ \ x = \sqrt{4 - x}$$

squaring on both sides

$$18x^2 = 4 - x$$

$$18x^2 + x - 4 = 0$$

$$18x^2 + 9x - 8x - 4 = 0$$

$$9x(2x+1)-4(2x+1)=0$$
.

$$(2x+1)(9x-4)=0$$

$$x = -\frac{1}{2}, \frac{4}{9}$$

$$\Rightarrow x = \frac{4}{9} \quad (\because x > 0)$$

=4

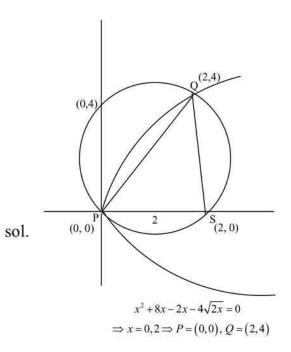
$$\therefore \text{ Required answer is } 6 + \log_{3/2} \left(\frac{3}{2}\right)^{-2}$$

$$= 6 - 2$$

59. Let S be the focus of the parabola
$$y^2 = 8x$$
 and let PQ be the common chord of the circle

 $x^2 + y^2 - 2x - 4y = 0$ and the given parabola. The area of the triangle PQS is

Ans. 4



area of ΔSPQ

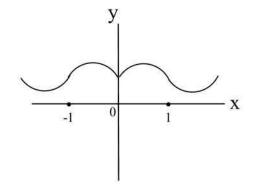
$$= \frac{1}{2} \times 2 \times 4$$
$$= 4$$

60. Let $f: IR \to IR$ be defined as $f(x) = |x| + |x^2 - 1|$. The total number of points at which f attains either a local maximum or a local minimum is

Ans. 5

sol.
$$f(x) = -x + x^2 - 1, x \le -1$$

 $= -x + 1 - x^2, -1 < x < 0$
 $= x + 1 - x^2, 0 \le x < 1$
 $= x + x^2 - 1, x \ge 1$
 $f'(x) = 2x - 1, x < -1$
 $= -2x - 1, -1 < x < 0$
 $= 1 - 2x, 0 < x < 1$
 $= 1 + 2x, x > 1$



differentiable at $x = -\frac{1}{2}, \frac{1}{2}$,

not differentiable at -1, 0, 1

The number of points = 5