67.	A coil of inductance 300 mH and resistance 2Ω is connected to a source of voltage 2V. The current reaches half of its steady state value in: (a) 0.05 s (b) 0.1 s (c) 0.15 s (d) 0.3 s The self-inductance of the motor of an electric fan is 10 H. In order to impart maximum power at 50 Hz, it should be connected to a	 (a) its velocity will decrease (b) its velocity will increase (c) it will turn towards right of direction of motion (d) it will turn towards left of direction of motion 72. A charged particle of mass mand charge q travels on a circular path of radius r that is perpendicular to a magnetic field B. The time
68.	capacitance of : (a) $4\mu F$ (b) $8\mu F$ (c) $1\mu F$ (d) $2\mu F$ An energy source will supply a constant current into the load, if its internal resistance is : (a) equal to the resistance of the load	taken by the particle to complete one revolution is: (a) $\frac{2\pi mq}{B}$ (b) $\frac{2\pi q^2 B}{m}$ (c) $\frac{2\pi qB}{m}$ (d) $\frac{2\pi m}{qB}$
	 (b) very large as compared to the load resistance (c) zero (d) non-zero but less than the resistance of the load 	73. In a potentiometer experiment the balancing with a cell is at length 240 cm. On shunting the cell with a resistance of 2Ω , the balancing length becomes 120 cm. The internal resistance of the cell is:
69.	A circuit has a resistance of 12Ω and an impedance of 15Ω . The power factor of the circuit will be: (a) 0.8 (b) 0.4	 (a) 1 Ω (b) 0.5 Ω (c) 4 Ω (d) 2 Ω 74. The resistance of hot tungsten filament is about 10 times the cold resistance. What will be the resistance of 100 W and 200 V lamp, when not in
70.	(c) 1.25 (d) 0.125 The phase difference between the alternating current and emf is $\pi/2$. Which of the following cannot be the constituent of the circuit? (a) C alone (b) R, L	tuse? (a) 40Ω (b) 20Ω (c) 400Ω (d) 200Ω 75. A magnetic needle is kept in a non-uniform magnetic field. It experiences:
71.	(c) L, C (d) L alone A uniform electric field and a uniform magnetic field are acting along the same direction in a certain region. If an electron is projected along the direction of the fields with a certain velocity, then:	(a) a torque but not a force(b) neither a force nor a torque(c) a force and a torque(d) a force but not a torque
	Chemistry	×
	The oxidation state of $Crin[Cr(NH_3)_4Cl_2]^+$ is: (a) 0 (b) +1 (c) +2 (d) +3	 79. Which one of the following species is diamagnetic in nature? (a) H₂ (b) H₂⁺ (c) H₂ (d) He₂⁺
77.	reduces fever? (a) Tranquiliser (b) Antibiotic (c) Antipyretic (d) Analgesic	80. If α is the degree of dissociation of Na ₂ SO ₄ , the van't Hoff factor (i) used for calculating the molecular mass is:
78.	Which of the following oxides is amphoteric in character?	(a) $1-2\alpha$ (b) $1+2\alpha$ (c) $1-\alpha$ (d) $1+\alpha$

(a) SnO₂ (c) CO₂ (b) SiO₂ -- (d) CaO

81. Which of the following is a polyamide?

(b) Terylene (d) Teflon

(a) Bakelite (c) Nylon-66

82.	Due	to	the	presence	of	an	unpaired	electron,
	free radicals are :							

- (a) cations
- (b) anions
- (c) chemically inactive
- (d) chemically reactive

83. For a spontaneous reaction the ΔG, equilibrium constant (K) and E_{cell}° will be respectively:

- (a) -ve, > 1, -ve (b) -ve, < 1, -ve
- (c) -ve, > 1, -ve (d) -ve, > 1, +ve

84. Hydrogen bomb is based on the principle of :

- (a) artificial radioactivity
- (b) nuclear fusion
- (c) natural radioactivity
- (d) nuclear fission

85. An ionic compound has a unit cell consisting of A ions at the corners of a cube and B ions on the centres of the faces of the cube. The empirical formula for this compound would be:

- (a) A_2B
- (b) AB_3
- (c) A2B
- (d) AB

86. The highest electrical conductivity of the following aqueous solutions is of:

- (a) 0.1 M difluoroacetic acid
- (b) 0.1 M fluoroacetic acid
- (c) 0.1 M chloroacetic acid
- (d) 0.1 M acetic acid

87. Lattice energy of an ionic compound depends

- (a) charge on the ion and size of the ion
- (b) packing of ions only
- (c) size of the ion only
- (d) charge on the ion only

88. Consider an endothermic reaction $X \to Y$ with the activation energies E_b and E_f for the backward and forward reactions respectively. In general:

> (a) there is no definite relation between E_b and E

- (b) $E_b = E_f$
- (c) $E_b > E_f$
- (d) $E_b < E_f$

89. Aluminium oxide may be electrolysed at 1000 °C to furnish aluminium metal (Atomic mass=27 amu: 1 faraday= 96,500 Coulombs). The cathode reaction is

$$Al^{3+} + 3e^{-} \longrightarrow Al^{0}$$

To prepare 5.12 kg of aluminium metal by this method would require:

- (a) 5.49×10^1 C of electricity
- (b) 5.49 × 104 C of electricity
- (c) 1.83×10^7 C of electricity
- (d) 5.49×10^7 C of electricity

90. The volume of a colloidal particle, V_C as compared to the volume of a solute particle in a true solution V_S , could be:

- (a) $\frac{V_c}{V_s} \approx 10^3$ (b) $\frac{V_c}{V_s} \approx 10^{-3}$ (c) $\frac{V_c}{V_s} \approx 10^{23}$ (c) $\frac{V_c}{V_s} \approx 1$

91. Consider the reaction: $N_2 + 3H_2 \longrightarrow 2NH_3$ carried out at constant temperature and pressure. If ΔH and ΔU are the enthalpy and internal energy changes for the reaction, which of the following expressions is true?

- (a) $\Delta H > \Delta U$
- (b) $\Delta H < \Delta U$
- (c) $\Delta H = \Delta U$
- (d) $\Delta H = 0$

92. The solubility product of a salt having general formula MX_2 , in water is 4×10^{-12} . The concentration of M^{2+} ions in the aqueous solution of the salt is:

- (a) 4.0×10^{-10} M (b) 1.6×10^{-4} M
- (c) 1.0×10^{-4} M (d) 2.0×10^{-6} M

93. Benzene and toluene form nearly ideal solutions. At 20°C, the vapour pressure of benzene is 75 torr and that of toluene is 22 torr. The partial vapour pressure of benzene at 20°C for a solution containing 78 g of benzene and 46 g of toluene in torr is:

- (a) 53.5
- (b) 37.5
- (c) 25
- (d) 50

94. Which one of the following statements is not true about the effect of an increase in temperature on the distribution of molecular speeds in a gas?

- (a) The area under the distribution curve remains the same as under the lower temperature
- (b) The distribution becomes broader
- (c) The fraction of the molecules with the most probable speed increases
- (d) The most probable speed increases
- 95. For the reaction

$$2NO_2(g) \rightleftharpoons 2NO(g) + O_2(g)$$

 $(K_c = 1.8 \times 10^{-6} \text{ at } 184^{\circ}\text{C})$

(R = 0.00831 kJ/(mol. K))

When Kp and Ke are compared at 184°C it is found that:

- (a) whether K_p is greater than, less than or equal to K_c depends upon the total gas pressure
- (b) $K_p = K_c$
- (c) K_p is less than K_c
- (d) K_p is greater than K_c
- 96. The exothermic formation of CIF₃ is represented by the equation:

 $Cl_2(g) + 3 F_2(g) \Longrightarrow 2 ClF_3(g); \Delta Hr = -329 kJ$ Which of the following will increase the quantity of ClF₃ in an equilibrium mixture of Cl₂, F₂ and ClF₃?

- (a) Adding F₂
- (b) Increasing the volume of the container
- (c) Removing Cl₂
- (d) Increasing the temperature
- 97. Hydrogen ion concentration in mol/L in a solution of pH = 5.4 will be:
 - (a) 3.98×10^{-6}
- (b) 3.68 × 10⁻⁶
- (c) 3.88×10^6
- (d) 3.98×10^8
- A reaction involving two different reactants can never be
 - (a) bimolecular reaction
 - (b) second order reaction
 - (c) first order reaction
 - (d) unimolecular reaction
- **99.** Two solutions of a substance (non electrolyte) are mixed in the following manner.

480 mL of 1.5 M first solution +520 mL of 1.2 M second solution.

What is the molarity of the final mixture?

- (a) 2.70 M
- (b) 1.344 M
- (c) 1.50 M
- (d) 1.20 M
- **100.** During the process of electrolytic refining of copper, some metals present as impurity settle as 'anode mud'. These are:
 - (a) Fe and Ni
- (b) Ag and Au
- (c) Pb and Zn
- (d) Se and Ag

101.	Electrolyte	KCl	KNO ₃	HCl	NaOAc	NaCl
	$\Lambda^{\infty}(S \text{ cm}^2 \text{ mol}^{-1})$	149.9	145.0	426.2	91.0	126.5

Calculate Λ^{∞}_{HOAc} using appropriate molar conductances of the electrolytes listed above at infinite dilution in H_2O at 25°C:

- (a) 217.5
- (b) 390.7
- (c) 552.7
- (d) 517.2
- 102. If we consider that 1/6, in place of 1/12, mass of carbon atom is taken to be the relative atomic mass unit, the mass of one mole of a substance will:

- (a) be a function of the molecular mass of the substance
- (b) remain unchanged
- (c) increase two fold
- (d) decrease twice
- 103. In a multi-electron atom, which of the following orbitals described by the three quantum numbers will have the same energy in the absence of magnetic and electric fields?
 - (A) n = 1, l = 0, m = 0
 - (B) n = 2, l = 0, m = 0
 - (C) n = 2, l = 1, m = 1
 - (D) n = 3, l = 2, m = 1
 - (E) n=3, l=2, m=0
 - (a) (D) and (E)
- (b) (C) and (D)
- (b) (B) and (C) (d) (A)
- (d) (A) and (B)
- 104. Based on lattice energy and other considerations which one of the following alkali metal chlorides is expected to have the highest melting point?
 - (a) RbCl
- (b) KCl
- (c) NaCl
- (d) LiCl
- **105.** A schematic plot of $\ln K_{eq}$ versus inverse of temperature for a reaction is shown below:

The reaction must be:

- (a) highly sponfaneous at ordinary temperature
- (b) one with negligible enthalpy change
- (c) endothermic
- (d) exothermic
- 106. Heating mixture of Cu2O and Cu2S will give
 - (a) Cu_2SO_3
- (b) CuO + CuS
- (c) $Cu + SO_3$
- (d) $Cu + SO_2$
- 107. The molecular shapes of SF4, CF4 and XeF4 are:
 - (a) different with 1, 0 and 2 lone pairs of electrons on the central atom, respectively
 - (b) different with 0, 1 and 2 lone pairs of electrons on the central atom, respectively
 - (c) the same with 1, 1 and 1 lone pair of electrons on the central atoms, respectively
 - (d) the same with 2, 0 and 1 lone pairs of electrons on the central atom, respectively

- 108. The disperse phase in colloidal iron (III) hydroxide and colloidal gold is positively and negatively charged, respectively. Which of the following statements is not correct?
 - (a) Coagulation in both sols can be brought about by electrophoresis
 - (b) Mixing the sols has no effect
 - (c) Sodium sulphate solution causes coagulation in both sols
 - (d) Magnesium chloride solution coagulates, the gold sol more readily than the iron (III) hydroxide sol.
- 109. The number of hydrogen atom(s) attached to phosphorus atom in hypophosphorous acid is :
 - (a) three

(b) one

(c) two

- (d) zero
- 110. What is the conjugate base of OH⁻?
 - (a) O2-

(b) O-

(c) H₂O

- (d) O2
- 111. Heating an aqueous solution of aluminium chloride to dryness will give :
 - (a) Al(OH)Cl₂

(b) Al₂O₃

(c) Al₂Cl₆

- (d) AlCl₂
- 112. The correct order of the thermal stability of hydrogen halides (H - X) is:
 - (a) HI > HCl < HF > HBr
 - (b) HCl < HF > HBr < HI
 - (c) HF > HCl > HBr > HI
 - (d) HI > HBr > HCl > HF
- 113. Calomel (Hg₂Cl₂) on reaction with ammonium hydroxide gives:
 - (a) HgO
 - (b) Hg,O
 - (c) NH2-Hg-Hg-Cl
 - (d) HgNH₂Cl
- 114. The number and type of bonds between two carbon atoms in calcium carbide are:
 - (a) two sigma, two pi
 - (b) two sigma, one pi
 - (c) one sigma, two pi
 - (d) one sigma, one pi
- 115. The oxidation state of chromium in the final product formed by the reaction between KI and acidified potassium dichromate solution is:
 - (a) +3

(b) +2

(c) + 6

- (d) +4
- 116. In silicon dioxide :
 - (a) there are double bonds between silicon and oxygen atoms
 - (b) silicon atom is bonded to two oxygen atoms

- (c) each silicon atom is surrounded by two oxygen atoms and each oxygen atom is bounded to two silicon atoms
- (d) each silicon atom is surrounded by four oxygen atoms and each oxygen atom is bonded to two silicon atoms
- 117. The lanthanide contraction is responsible for the fact that:
 - (a) Zr and Zn have the same oxidation state
 - (b) Zr and Hf have about the same radius
 - (c) Zr and Nb have similar oxidation state
 - (d) Zr and Y have about the same radius
- 118. The IUPAC name of the co-ordination compound $K_3[Fe(CN)_6]$ is :
 - (a) Tripotassium hexacyanoiron (II)
 - (b) Potassium hexacyanoiron (H)
 - (c) Potassium hexacyanoferrate (III)
 - (d) Potassium hexacyanoferrate (II)
- 119. In which of the following arrangements the order is not according to the property indicated against it?
 - (a) Li < Na < K < Rb: Increasing metallic radius
 - (b) I < Br < F < Cl: Increasing electron gain enthalpy (with negative sign)
 - (c) B < C < N < O: Increasing . ionisation enthalpy
 - (d) $Al^{3+} < Mg^{2+} < Na^{+} < F^{-}$: ionic size
- 120. Of the following sets which one does not contain isoelectronic species?
 - (a) BO_3^{3-} , CO_3^{2-} , NO_3^{-}
 - (b) SO_3^{2-} , CO_3^{2-} , NO_3^{--}
 - (c) CN-, N2, C2-
 - (d) PO_4^{3-} , SO_4^{2-} , ClO_4^{-}
- 121. 2-methylbutane on reacting with bromine in the presence of sunlight gives mainly:
 - (a) 1-bromo-3-methylbutane
 - (b) 2-bromo-3-methylbutane
 - (c) 2-bromo-2-methylbutane
 - (d) 1-bromo-2-methylbutane
- 122. Which of the following compounds shows optical isomerism?
 - (a) $[Co(CN)_6]^3$ (b) $[Cr(C_2O_4)_3]^3$ (c) $[ZnCl_4]^{2-}$ (d) $[Cu(NH_3)_4]^{2+}$
- 123. Which one of the following cyano complexes would exhibit the lowest value of paramagnetic behaviour?

(a) $[Co(CN)_6]^{3-}$ (b) $[Fe(CN)_6]^{3-}$ (c) $[Mn(CN)_6]^{3-}$ (d) $[Cr(CN)_6]^{3-}$

(Atomic no. Cr = 24, Mn = 25, Fe = 26, Co = 27)

- **124.** The best reagent to convert pent-3-en-2-ol into pent-3-en-2-one is:
 - (a) pyridinium chloro-chromate
 - (b) chromic anhydride in glacial acetic acid
 - (c) acidic dichromate
 - (d) acidic permanganate
- 125. A photon of hard gamma radiation knocks a proton out of ²⁴₁₂Mg nucleus to form:
 - (a) the isobar of 23 Na
 - (b) the nuclide 23 Na
 - (c) the isobar of parent nucleus
 - (d) the isotope of parent nucleus
- **126.** Reaction of one molecule of HBr with one molecule of 1, 3-butadiene at 40°C gives predominantly:
 - (a) 1-bromo-2-butene under kinetically controlled conditions
 - (b) 3-bromobutene under thermodynamically controlled conditions
 - (c) 1-bromo-2-butene under thermodynamically controlled conditions
 - (d) 3-bromobutene under kinetically controlled conditions
- 127. The decreasing order of nucleophilicity among the nucleophiles:

(B) CH₃O⁻

(C) CN

- (a) (C), (B), (A), (D)
- (b) (B), (C), (A), (D)
- (c) (D), (C), (B), (A)
- (d) (A), (B), (C), (D)
- 128. Tertiary alkyl halides are practically inert to substitution by S_N2 mechanism because of:
 - (a) steric hindrance (b) inductive effect
 - (c) instability
- (d) insolubility
- **129.** In both DNA and RNA, heterocylic base and phosphate ester linkages are at:

- (a) C'₅ and C'₁ respectively of the sugar molecule
- (b) C_1' and C_5' respectively of the sugar molecule
- (c) C₂ and C₅ respectively of the sugar molecule
- (d) C'₅ and C'₂ respectively of the sugar molecule
- **130.** Among the following acids which has the lowest pK_n value?
 - (a) CH₃CH₂COOH
- (b) (CH₃)₂CH—COOH
- (c) HCOOH
- (d) CH₃COOH
- 131. Of the five isomeric hexanes, the isomer which can give two monochlorinated compounds is:
 - (a) 2-methylpentane
 - (b) 2, 2-dimethylbutane
 - (c) 2, 3-dimethylbutane
 - (d) n-hexane
- 132. Alkyl halides react with dialkyl copper reagents to give:
 - (a) alkenyl halides
 - (b) alkanes
 - (c) alkyl copper halides
 - (d) alkenes
- 133. Which one of the following methods is neither meant for the synthesis nor for separation of amines?
 - (a) Curtius reaction
 - (b) Wurtz reaction
 - (c) Hofmann method
 - (d) Hinsberg method
- **134.** Which types of isomerism is shown by 2, 3-dichlorobutane?
 - (a) Structural
- (b) Geometric
- (c) Optical
- (d) Diastereo
- 135. Amongst the following the most basic compound is:
 - (a) p-nitroaniline
- (b) acetanilide
- (c) aniline
- (d) benzylamine
- **136.** Acid catalyzed hydration of alkenes except ethene leads to the formation of:
 - (a) mixture of secondary and tertiary alcohols
 - (b) mixture of primary and secondary alcohols
 - (c) secondary or tertiary alcohol
 - (d) primary alcohol
- **137.** Which of the following is fully fluorinated polymer?
 - (a) PVC
- (b) Thickol
- (c) Teflon
- (d) Neoprene

- **138.** Elimination of bromine from 2-bromobutane results in the formation of :
 - (a) predominantly 2-butyne
 - (b) predominantly 1-butene
 - (c) predominantly 2-butene
 - (d) equimolar mixture of 1 and 2-butene
- 139. Equimolar solutions in the same solvent have :
 - (a) different boiling and different freezing points
 - (b) same boiling and same freezing points
 - (c) same freezing point but different boiling
 - (d) same boiling point but different freezing point
- 140. The reaction

$$\begin{array}{ccc}
O & O \\
\parallel & \parallel \\
R & -C - X + Nu^{\oplus} \rightarrow R & -C - Nu + X^{\oplus}
\end{array}$$

is fastest when X is:

- (a) OCOR
- (b) OC₂H₅
- (c) NH₂
- (d) CI
- 141. The structure of diborane (B₂H₆) contains:
 - (a) four 2C-2e bonds and four 3C-2e bonds
 - (b) two 2C-2e bonds and two 3C-3e bonds
 - (c) two 2C-2e bonds and four 3C-2e bonds
 - (d) four 2C-2e" bonds and two 3C-2e" bonds
- 142. Which of the following statements in relation to the hydrogen atom is correct?
 - (a) 3s, 3p and 3d orbitals all have the same energy
 - (b) 3s and 3p orbitals are of lower energy than 3d orbital
 - (c) 3p orbital is lower in energy than 3d orbital
 - (d) 3s orbital is lower in energy than 3p orbital
- 143. Which of the following factors may be regarded as the main cause of lanthanide contraction?
 - (a) Greater shielding of 5d electron by 4f electrons
 - (b) Poorer shielding of 5d electron by 4f electrons
 - (c) Effective shielding of one of 4f electrons by another in the sub-shell
 - (d) Poor shielding of one of 4f electron by another in the sub-shell
- 144. The value of the 'spin only' magnetic moment for one of the following configurations is 2.84 BM. The correct one is:
 - (a) d⁵ (in strong ligand field)
 - (b) d³ (in weak as well as in strong fields)
 - (c) d⁴ (in weak ligand field)
 - (d) d^4 (in strong ligand field)

- 145. Reaction of cyclohexanone with dimethylamine in the presence of catalytic amount of an acid forms a compound. Water during the reaction is continuously removed. The compound formed is generally known as:
 - (a) an amine
- (b) an imine
- (c) an enamine
- (d) a Schiffs base
- 146. p-cresol reacts with chloroform in alkaline medium to give the compound A which adds hydrogen cyanide to form, the compound B. The latter on acidic hydrolysis gives chiral carboxylic acid. The structure of the carboxylic acid is:

(a)
$$CH_3$$
 CH_2COOH CH_2COOH CH_3 CH_2COOH CH_3 $CH(OH)COOH$ $CH(OH)COOH$ $CH(OH)COOH$

- **147.** If the bond dissociation energies of XY, X_2 and Y_2 (all diatomic molecules) are in the ratio of 1:1:0.5 and ΔH_f for the formation of XY is-200 kJ mol⁻¹. The bond dissociation energy of X_2 will be:
 - (a) 400 kJ mol⁻¹
- (b) 300 kJ mol-1
- (c) 200 kJ mol⁻¹
- (d) none of these -
- 148. An amount of solid NH₄HS is placed in a flask already containing ammonia gas at a certain temperature and 0.50 atm pressure. Ammonium hydrogen sulphide decomposes to yield NH₃ and H₂S gases in the flask. When the decomposition reaction reaches equilibrium, the total pressure in the flask rises to 0.84 atm? The equilibrium constant for NH₄HS decomposition at this temperature is:
 - (a) 0.11

(b) 0.17

- (c) 0.18
- (d) 0.30
- 149. An organic compound having molecular mass 60 is found to contain C = 20%, H = 6.67% and N = 46.67% while rest is oxygen. On heating it gives NH₃ alongwith a solid residue. The solid residue give violet colour with alkaline copper sulphate solution. The compound is: