- 71. When npn transistor is used as an amplifier:
 - (a) electrons move from base to collector
 - (b) holes move from emitter to base
 - (c) electrons move from collector to base
 - (d) holes move from base to emitter
- 72. For a transistor amplifier in common emitter configuration for load impedance of 1 k Ω ($h_{fe} = 50$ and $h_{ve} = 25 \,\mu$ A/V), the current gain is:
 - (a) -5.2
- (b) -15.7
- (c) 24.8
- (d) 48.73
- 73. A piece of copper and another of germanium are cooled from room temperature to 77 K, the resistance of:
 - (a) each of them increases
 - (b) each of them decreases
 - (c) copper decreases and germanium increases
 - (d) copper increases and germanium decreases

- 74. The manifestation of band structure in solids is due to:
 - (a) Heisenberg's uncertainty principle
 - (b) Pauli's exclusion principle
 - (c) Bohr's correspondence principle
 - (d) Boltzmann's law
- **75.** When *p-n* junction diode is forward biased, then:
 - (a) the depletion region is reduced and barrier height is increased
 - (b) the depletion region is widened and barrier height is reduced
 - (c) both the depletion region and barrier height are reduced
 - (d) both the depletion region and barrier height are increased

Chemistry

- **76.** Which of the following sets of quantum numbers is correct for an electron in 4f orbital?
 - (a) n = 4, l = 3, m = +4, s = +1/2
 - (b) n = 4, l = 4, m = -4, s = -1/2
 - (c) n = 4, l = 3, m = +1, s = +1/2
 - (d) n = 3, l = 2, m = -2, s = +1/2
- 77. Consider the ground state of Cr atom (Z = 24). The numbers of electrons with the azimuthal quantum numbers, l = 1 and 2 are, respectively:
 - (a) 12 and 4
- (b) 12 and 5
- (c) 16 and 4
- (d) 16 and 5
- 78. Which one of the following ions has the highest value of ionic radius?
 - (a) Li⁺
- (b) B^{3+}
- (c) 0^{2-}
- (d) F
- **79.** The wavelength of the radiation emitted, when in a hydrogen atom electron falls from infinity to stationary state 1, would be (Rydberg constant $-1.097 \times 10^7 \text{ m}^{-1}$):
 - (a) 91 nm
- (b) 192 nm
- (c) 406 nm
- (d) 9.1×10^{-8} nm
- **80.** The correct order of bond angles (smallest first) in H₂S, NH₃, BF₃ and SiH₄ is:
 - (a) $H_2S < SiH_4 < NH_3 < BF_3$
 - (b) $NH_3 < H_2S < SiH_4 < BF_3$
 - (c) $H_2S < NH_3 < SiH_4 < BF_3$
 - (d) $H_2S < NH_3 < BF_3 < SiH_4$

- **81.** Which one of the following sets of ions represents the collection of isoelectronic species?
 - (a) K⁺, Ca²⁺, Sc³⁺, Cl⁻
 - (b) Na+, Ca2+, Sc3+, F
 - (c) K⁺, Cl⁻, Mg²⁺, Sc³⁺
 - (d) Na⁺, Mg²⁺, Al³⁺, Cl⁻

(Atomic numbers F = 9, Cl = 17, Na = 11, Mg = 12, Al = 13, K = 19, Ca = 20, Sc = 21)

- **82.** Among Al₂O₃, SiO₂, P₂O₃ and SO₂ the correct order of acid strength is:
 - (a) $SO_2 < P_2O_3 < SiO_2 < Al_2O_3$
 - (b) $SiO_2 < SO_2 < Al_2O_3 < P_2O_3$
 - (c) $Al_2O_3 < SiO_2 < SO_2 < P_2O_3$
 - (d) $Al_2O_3 < SiO_2 < P_2O_3 < SO_2$
- 83. The bond order in NO is 2.5 while that in NO* is 3. Which of the following statements is true for these two species?
 - (a) Bond length in NO is greater than in NO
 - (b) Bond length in NO is greater than in NO+
 - (c) Bond length in NO is equal to that in NO
 (d) Bond length is unpredictable
- 84. The formation of the oxide ion O²⁻ (g) requires first an exothermic and then an endothermic step as shown below

$$O(g) + e^{-} = O^{-}(g); \Delta H^{\circ} = -142 \text{ kJ mol}^{-1}$$

$$O(g)^{-} + e^{-} = O^{2-}(g); \Delta H^{o} = 844 \text{ kJ mol}^{-1}$$

This is because:

- (a) oxygen is more electronegative
- (b) oxygen has high electron affinity
- (c) O ion will tend to resist the addition of another electron
- (d) O ion has comparatively larger size than oxygen atom
- 85. The states of hybridization of boron and oxygen atoms in boric acid (H₂BO₂) are respectively:
 - (a) sp^2 and sp^2
- (b) sp^2 and sp^3
- (c) sp^3 and sp^2
- (d) sp^3 and sp^3
- 86. Which one of the following has the regular tetrahedral structure?
 - (a) XeF₄
- (b) SF4
- (c) BF 4
- (d) [Ni(CN)4]2-

(Atomic numbers B = 5, S = 16, Ni = 28, Xe = 54

- 87. Of following electronic the outer configurations of atoms, the highest oxidation state is achieved by which one of them?
 - (a) $(n-1) d^8 n s^2$
- (b) $(n-1) d^5 n s^1$
- (c) $(n-1) d^3 n s^2$
- (d) $(n-1) d^5 n s^2$
- 88. As the temperature is raised from 20°C to 40°C, the average kinetic energy of neon atoms changes by a factor of which of the following?
 - (a) 1/2
- (b) $\sqrt{313/293}$ (d) 2
- (c) 313/293
- 89. The maximum number of 90° angles between bond pair-bond pair of electrons is observed in:
 - (a) dsp3 hybridization
 - (b) sp³d hybridization
 - (c) dsp2 hybridization
 - (d) sp³d² hybridization
- 90. Which one of the following aqueous solutions will exhibit highest boiling point?
 - (a) 0.01 M Na₂SO₄
 - (b) 0.01 M KNO₃
 - (c) 0.015 M urea
 - (d) 0.015 M glucose
- 91. Which among the following factors is the most important in making fluorine the strongest oxidizing agent?
 - (a) Electron affinity
 - (b) Ionization enthalpy
 - (c) Hydration enthalpy
 - (d) Bond dissociation energy

- 92. In van der Waals' equation of state of the gas law, the constant b' is a measure of:
 - (a) intermolecular repulsions
 - (b) intermolecular attraction
 - (c) volume occupied by the molecules
 - (d) intermolecular collisions per unit volume
- 93. The conjugate base of H₂PO₄ is:
 - (a) PO₄
- (c) H₃PO₄
- (d) HPO2-
- 94. 6.02×10^{20} molecules of urea are present in 100 mL of its solution. The concentration of urea solution is:
 - (a) 0.001 M
- (b) 0.01 M
- (c) 0.02 M
- (d) 0.1 M

(Avogadro constant, $N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$)

- To neutralise completely 20 mL of 0.1M aqueous solution of phosphorous acid (H3PO3), the volume of 0.1M aqueous KOH solution required is:
 - (a) 10 m L
- (b) 20 m L
- (c) 40 m L
- (d) 60 m L
- 96. For which of the following parameters the structural isomers C2H5OH and CH3OCH3 would be expected to have the same values? (Assume ideal behaviour):
 - (a) Heat of vaporisation
 - (b) Vapour pressure at the same temperature
 - (c) Boiling points
 - (d) Gaseous densities at the same temperature and pressure
- 97. Which of the following liquid pairs shows a positive deviation from Raoult's law?
 - hydrochloric acid (a) Water
 - methanol (b) Benzene
 - nitric acid (c) Water
 - (d) Acetone chloroform
- 98. Which one of the following statements is false?
 - (a) Raoult's law states that the vapour pressure of a component over a solution is proportional to its mole fraction
 - (b) The osmotic pressure (π) of a solution is given by the equation $\pi = MRT$, where M is the molarity of the solution
 - (c) The correct order of osmotic pressure for 0.01 M aqueous solution of each compound is BaCl₂ > KCl > CH₂COOH > sucrose
 - (d) Two sucrose solutions of same molality prepared in different solvents will have the same freezing point depression

(b) Schottky defect (c) Interstitial defect	(a) unit of k must be s^{-1} (b) $t_{1/2}$ is a constant
(d) Frenkel and Schottky defects	(c) rate of formation of C is twice the rate of disappearance of A
100. An ideal gas expands in volume from 1×10^{-3} m ³	(d) value of k is independent of the initial
to 1×10^{-2} m ³ at 300K against a constant pressure of 1×10^5 Nm ⁻² . The work done is:	concentrations of A and B
pressure of $L \times 10^{\circ}$ Nm $^{\circ}$. The work done is: (a) -900 J (b) -900 kJ	107. Consider the following <i>E</i> ° values:
(c) 270 kJ (d) 900 kJ	$E_{Pe^{3+}/Pe^{2+}}^{\circ} = + 0.77 \text{ V}$
101. In a hydrogen-oxygen fuel cell, combustion of	$E_{Sn^{2+}/Sn}^{c} = -0.14 \text{ V}$
hydrogen occurs to :	Under standard conditions the potential for the
(a) generate heat (b) create potential difference between the	reaction
two electrodes	$Sn(s) + 2Fe^{3+}(aq) \rightarrow 2Fe^{2+}(aq) + Sn^{2+}(aq)$ is:
(c) produce high purity water	(a) 1.68 V (b) 1.40 V
(d) remove adsorbed oxygen from electrode surfaces	(c) 0.91 V (d) 0.63 V
102. In a first order reaction, the concentration of the	108. The molar solubility (in mol 1. 1) of a sparingly
reactant, decreases from 0.8 M to 0.4 M in	soluble salt MX_4 is 's'. The corresponding solubility product is K_{sp} , s is given in terms of
15 min. The time taken for the concentration to	
change from 0.1 M to 0.025 M is: (a) 30 min (b) 15 min	K_{sp} by the relation: (a) $s = (K_{sp}/128)^{1/4}$ (b) $s = (128 K_{sp})^{1/4}$
(c) 7.5 min (d) 60 min	
103. What is the equilibrium expression for the	(c) $s = (256 K_{sp})^{1/5}$ (d) $s = (K_{sp}/256)^{1/5}$
reaction	109. The standard emf of a cell, involving one
$P_4(s) + 5O_2(g) \Longrightarrow P_4O_{10}(s)$?	electron change is found to be 0.591 V at
(a) $K_c = \frac{[P_4O_{10}]}{[P_4][O_2]^5}$ (b) $K_c = \frac{[P_4O_{10}]}{5[P_4][O_2]}$	25°C. The equilibrium constant of the reaction is $(F = 96,500 \text{ C mol}^{-1})$;
$[P_4] [O_2]^5$ $S[P_4] [O_2]$	(a) 1.0×10^1 (b) 1.0×10^5
(c) $K_c = [O_2]^5$ (d) $K_c = \frac{1}{[O_2]^5}$	(c) 1.0×10^{10} (d) 1.0×10^{30}
$[O_2]^{\circ}$	110. The enthalpies of combustion of carbon and
104. For the reaction, $CO(g) + Cl_2(g) \iff COCl_2(g)$, the K_g / K_c is	carbon monoxide are \rightarrow 393.5 and \rightarrow 283k J
equal to:	mol-1 respectively. The enthalpy of formation
(a) $1/RT$ (b) RT	of carbon monoxide per mole is:
(c) \sqrt{RT} (d) 1.0	(a) 110.5 kJ (b) 676.5 kJ
105. The equilibrium constant for the reaction	(c) -676.5 kJ (d) -110.5 kJ
$N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$ at temperature T is 4×10^{-4} . The value of K_c for	111. The limiting molar conductivities \wedge^c for NaCl, KBr
the reaction:	and KCl are 126, 152 and 150 S cm ² mol ⁻¹ respectively. The ∧° for NaBr is :
$NO(g) = \frac{1}{2} N_2(g) + \frac{1}{2} O_2(g)$ at the same	(a) $128 \text{ S cm}^2 \text{ mol}^{-1}$ (b) $176 \text{ S cm}^2 \text{ mol}^{-1}$
temperature is:	(c) 278 S cm ² mol ⁻¹ (d) 302 S cm ² mol ⁻¹
temperature is:	(a) and an invited the more

(a) 2.5×10^2

(c) 4×10^{-4}

is found to be:

reaction is that the:

(b) 50

(d) 0.02

106. The rate equation for the reaction $2A + B \rightarrow C$

rate = k[A][B]The correct statement in relation to this

99. What type of crystal defect is indicated in the

diagram below?

Na1, Cl-, Na1, Cl-, Na1, Cl-

Cl- Cl- Na+ Na+

Na+ CI- CI-, Na+ CI-

Cl- Na+ Cl- Na+ Na+

112. In a cell that utilises the reaction

$$Zn(s) + 2H^{+}(aq) \longrightarrow Zn^{2+}(aq) + H_{2}(g)$$

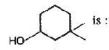
addition of H₂SO₄ to cathode compartment, will:

- (a) lower the E and shift equilibrium to the left
- (b) lower the E and shift the equilibrium to the right
- (c) increase the E and shift the equilibrium to the right
- (d) increase the E and shift the equilibrium to the left
- **113.** Which one of the following statements regarding helium is incorrect?
 - (a) It is used to fill gas balloons instead of hydrogen because it is lighter and non-inflammable
 - (b) It is used as a cryogenic agent for carrying out experiments at low temperatures
 - (c) It is used to produce and sustain powerful superconducting magnets
 - (d) It is used in gas-cooled nuclear reactors
- 114. Identify the correct statement regarding enzymes:
 - (a) Enzymes are specific biological catalysts that can normally function at very high temperatures (T ~1000 K).
 - (b) Enzymes are normally heterogeneous catalysts that are very specific in their action
 - (c) Enzymes are specific biological catalysts that cannot be poisoned
 - (d) Enzymes are specific biological catalysts that possess well defined active sites.
- 115. One mole of magnesium nitride on the reaction with an excess of water gives:
 - (a) one mole of ammonia
 - (b) one mole of nitric acid
 - (c) two moles of ammonia
 - (d) two moles of nitric acid
- **116.** Which one of the following ores is best concentrated by froth-floatation method?
 - (a) Magnetite
- (b) Cassiterite
- (c) Galena
- (d) Malachite
- 117. Beryllium and aluminium exhibit many properties which are similar. But, the two elements differ in:
 - (a) exhibiting maximum covalency in compounds
 - (b) forming polymeric hydrides
 - (c) forming covalent halides
 - (d) exhibiting amphoteric nature in their oxides

- 118. Aluminium chloride exists as dimer, Al₂Cl₆ in solid state as well as in solution of non-polar solvents such as benzene. When dissolved in water, it gives:
 - (a) $Al^{3+} + 3Cl^{-}$
 - (b) $[A](H_2O)_6]^{31} + 3CI^{-1}$
 - (c) $[Al (OH)_6]^{3-} + 3HCl$
 - (d) $Al_2O_3 + 6HCl$
- 119. The soldiers of Napolean army while at Alps during freezing winter suffered a serious problem as regards to the tin buttons of their uniforms. White metallic tin buttons got converted to grey powder. This transformation is related to:
 - (a) a change in the crystalline structure of tin
 - (b) an interaction with nitrogen of the air at very low temperatures
 - (c) a change in the partial pressure of oxygen in the air
 - (d) an interaction with water vapour contained in the humid air
- 120. The $E^{\circ}_{M^{3+}/M^{2+}}$ values for Cr, Mn, Fe and Co are -0.41, +1.57, +0.77 and +1.97 V respectively. For which one of these metals the change in oxidation state from +2 to +3 is easiest?
 - (a) Cr
- (b) Mn
- (c) Fe
- (d) Co
- 121. Excess of KI reacts with CuSO₄ solution and then Na₂S₂O₃ solution is added to it. Which of the statements is incorrect for this reaction?
 - (a) Cu₂I₂ is formed
 - (b) CuI₂ is formed
 - (c) Na₂S₂O₃ is oxidised
 - (d) Evolved I, is reduced
- 122. Among the properties (A) reducing (B) oxidising (C) complexing, the set of properties shown by CN - ion towards metal species is:
 - (a) A, B
- (b) B, C
- (c) C, A
- (d) A, B, C
- 123. The co-ordination number of a central metal atom in a complex is determined by:
 - (a) the number of ligands around a metal ion bonded by sigma bonds
 - (b) the number of ligands around a metal ion bonded by pi-bonds
 - (c) the number of ligands around a metal ion bonded by sigma and pi-bonds both
 - (d) the number of only anionic ligands bonded to the metal ion

124.	Which one of the following complexes is an outer orbital complex ?	
	(a) $[Fe(CN)_6]^{4-}$ (b) $[Mn (CN)_6]^{4-}$ (c) $[Co (NH_3)_6]^{3+}$ (d) $[Ni(NH_3)_6]^{2+}$	
	(Atomic numbers $Mn-25$, $Fe=26$, $Co=27$, $Ni=28$)	
125.	Co-ordination compounds have great importance in biological systems. In this	

- context which of the following statements is incorrect?
 - (a) Chlorophylls are green pigments in plants and contain calcium
 - (b) Haemoglobin is the red pigment of blood and contains iron
 - (c) Cyanocobalamin is vitamin B₁₂ and contains cobalt
 - (d) Carboxypeptidase-A is an enzyme and contains zinc
- **126.** Cerium (Z = 58) is an important member of the lanthanides. Which of the following statements about cerium is incorrect?
 - (a) The common oxidation states of cerium are + 3 and + 4
 - (b) The +3 oxidation state of cerium is more stable than the + 4 oxidation state
 - (c) The + 4 oxidation state of cerium is not known in solutions
 - (d) Cerium (IV) acts as an oxidising agent
- 127. Which one of the following has largest number of isomers?
 - (a) [Ru (NH₃)₄ Cl₂]⁺
 - (b) [Co (NH₃)₅ Cl]²⁺
 - (c) [lr (PR₂)₂ H (CO)]²⁺
 - (d) [Co (en), Clo]*
 - (R = alkyl group, en = ethylenediamine)
- 128. The correct order of magnetic moments (spin only values in BM) among the following is:
 - (a) $[MnCl_a]^{2-} > [CoCl_a]^{2-} > [Fe (CN)_6]^{4-}$
 - (b) $[MnCl_a]^{2-} > [Fe (CN)_6]^{4-} > [CoCl_a]^{2-}$
 - (c) $[Fe (CN)_6]^{4-} > [MnCl_4]^2 > [CoCl_4]^2$
 - (d) [Fe (CN)₆]⁴⁻ > [CoCl₄]²⁻ > [MnCl₄]²⁻


(Atomic numbers Mn = 25, Fe = 26, Co = 27) 129. Consider the following nuclear reactions:

 $^{238}_{92}M \rightarrow ^{\times}_{V}N + 2^{4}_{2}\text{He}; ^{\times}_{V}N \rightarrow ^{A}_{R}L + 2\beta^{*}$

The number of neutrons in the element L is:

- (a) 142
- (b) 144
- (c) 140
- (d) 146

- 130. The half-life of a radioisotope is four hours. If the initial mass of the isotope was 200g, the mass remaining after 24 hours undecayed is :
 - (a) 1.042 g
- (b) 2.084 g
- (c) 3.125 g
- (d) 4.167 g
- 131. The compound formed in the positive test for nitrogen with the Lassaigne solution of an organic compound is:
 - (a) Fe [Fe(CN),]3
 - (b) $Na_3[Fe(CN)_6]$
 - (c) Fe(CN)₃
 - (d) Na₄[Fe(CN)₅NOS]
- 132. The ammonia evolved from the treatment of 0.30g of an organic compound for the estimation of nitrogen was passed in 100 mL of 0.1 M sulphuric acid. The excess of acid required 20 mL of 0.5 M sodium hydroxide solution for complete neutralization. The organic compound
 - (a) acetamide
- (b) benzamide
- (c) urea
- (d) thiourea
- 133. Which one of the following has the minimum boiling point?
 - (a) n-butane
- (b) 1-butyne
- (c) 1-butene
- (d) Isobutene
- 134. The IUPAC name of the compound

- (a) 3,3-dimethyl-1-hydroxy cyclohexane
- (b) 1,1-dimethyl-3-hydroxy cyclohexane
- (c) 3,3-dimethyl-1-cyclohexanol
- (d) 1,1-dimethyl-3-cyclohexanol
- 135. Which one of the following does not have sp² hybridised carbon?
 - (a) Acetone
- (b) Acetic acid
- (c) Acetonitrile
- (d) Acetamide
- 136. Which of the following will have a meso-isomer also?
 - (a) 2-chlorobutane
 - (b) 2,3-dichlorobutane
 - (c) 2,3-dichloropentane
 - (d) 2-hydroxypropanoic acid
- 137. Rate of the reaction

$$R - C = \frac{O}{Z} + Nu^{-} \longrightarrow R - C = \frac{O}{Nu} + Z^{-}$$

is fastest when Z is:

- (a) CI
- (b) NH,
- (c) OC₂H₅
- (d) OCOCH₃

- 138. Amongst the following compounds, the optically active alkane having lowest molecular mass is:
 - (a) $CH_3 CH_2 CH_2 CH_3$ CH_3 |(b) $CH_3 - CH_2 - CH - CH_3$ |

 - (d) $CH_3 CH_2 C = CH$
- 139. Consider the acidity of the carboxylic acids:
 - (i) PhCOOH
 - (ii) o-NO 2C6H4COOH
 - (iii) p-NO2C6H4COOH
 - (iv) m-NO2C6H4COOH

Which of the following order is correct?

- (a) i > ii > iii > iv (b) ii > iv > iii > i
- (c) ii > iv > i > iii (d) ii > iii > iv > i
- 140. Which of the following is the strongest base?

(a)
$$NH_2$$
 (b) NH_2 NH_2 NH_2 NH_2 NH_2 NH_2

- 141. Which base is present in RNA but not in DNA?
 - (a) Uracil
- (b) Cytosine
- (c) Guanine
- (d) Thymine
- **142.** The compound formed on heating chlorobenzene with chloral in the presence of concentrated sulphuric acid is :
 - (a) gammexane
- (b) DDT
- (c) freon
- (d) hexachloroethane
- 143. On mixing ethyl acetate with aqueous sodium chloride, the composition of the resultant solution is:
 - (a) CH2COOC2H5 + NaCl
 - (b) CH₃COONa + C₂H₅OH
 - (c) CH₃COCl + C₂H₅OH + NaOH
 - (d) CH₃Cl + C₂H₅COONa
- 144. Acetyl bromide reacts with excess of CH₃MgI followed by treatment with a saturated solution of NH₄CI gives:

- (a) acetone
- (b) acetamide
- (c) 2-methyl-2-propanol
- (d) acetyl iodide
- 145. Which one of the following is reduced with zinc and hydrochloric acid to give the corresponding hydrocarbon?
 - (a) Ethyl acetate
- (b) Acetic acid
- (c) Acetamide
- (d) Buran-2-one
- **146.** Which one of the following undergoes reaction with 50% sodium hydroxide solution to give the corresponding alcohol and acid?
 - (a) Phenol
- (b) Benzaldehyde
- (c) Butanal
- (d) Benzoic acid
- 147. Among the following compounds which can be dehydrated very easily?
 - (a) CH₃CH₂CH₂CH₂CH₂OH

- 148. Which of the following compounds is not chiral?
 - (a) 1-chloropentane
 - (b) 2-chloropentane
 - (c) 1-chloro-2-methyl pentane
 - (d) 3-chloro-2-methyl pentane
- 149. Insulin production and its action in human body are responsible for the level of diabetes. This compound belongs to which of the following categories?
 - (a) A co-enzyme
- (b) A hormone
- (c) An enzyme
- (d) An antibiotic
- 150. The smog is essentially caused by the presence of:
 - (a) O_2 and O_3
 - (b) O_2 and N_2
 - (c) oxides of sulphur and nitrogen
 - (d) O_3 and N_2