

	Distance= πR	
	Displacement = $PP' = \sqrt{(\pi R^2) + (2R^2)} = R\sqrt{\pi^2 + 4}$	
10	The slope is given by $Slope = \tan \theta$ = $\frac{\Delta x}{\Delta t}$ = velocity.	
	Time (s) That is the slope of position time graph gives the Velocity.	
Ansv	wer any 4 questions from 11 to 14 each carries 3 score	
11	Coefficient of viscosityForce/area x velocity gradient[ML-1T-1]Gravitational constantForce x (distance)²/(mass)²[M-1L 3T-2]Modulus of elasticityForce/area x number[ML-1T-2]	3
12	Centripetal force $F \alpha m^a v^b r^c$ ie., $F = k m^a v^b r^c$ (1) Taking dimensions $M^1L^1T^{-2} = (M^1)^a (L^1T^{-1})^b (L^1)^c$ $M^1L^1T^{-2} = M^a L^bT^{-b} L^c$ $M^1L^1T^{-2} = M^a L^{b+c} T^{-b}$ Equating dimensions on both sides $a=1 \ b=2 \ c=-1 \ also given \ k=1$ Thus equation (1) becomes $F = \frac{mv^2}{r}$	
13	Average velocity = 0 (because total displacement =0) $Average speed = \frac{Total distance}{Total time}$ $= \frac{S+S}{t_1+t_2}$ $= \frac{2S}{\frac{S}{V_1} + \frac{S}{V_2}}$ $= \frac{2V_1V_2}{V_1+V_2}$ $= \frac{2x60x90}{150} = 72 \text{ km/hr}$	
14	a) By the equation of motion, $v^2 = u^2 + 2as$ Here v=0 a=-a retardation, S> Stopping distances Therefore $0=u^2-2as$ Stopping distance $S=\frac{u^2}{2a}$	1 1 1
		, .

PHYSOL-The solution for learning Physics Prepared by Higher Secondary Physics Teachers Association Malappuram

Prepared by Higher Secondary Physics Teachers Association Malappuram

	This is the displacement – time relation. c) i) An object with constant velocity has always constant speed.	1
17	a) <u>Velocity-time relation:</u> v=u+at Let u> initial velocity	1 1 ^{<u>1</u>}
	v>final velocity	2
	a>acceleration	1 <u>-</u> 2
	t>time.	
	We have $acceleration = \frac{Change invelocity}{time}$	
	$a = \frac{v - u}{t}$	
	v-u=at	
	v = u + at This is the velocity -time relation.	
	b) <u>Velocity-Displacement relation</u> : $v^2 = u^2 + 2as$	
	Let S-> Displacement u->initial velocity v> final velocity a->acceleration t->time.	
	We have $Average \ velocity = \frac{Total \ displacement}{Time}$	
	$V_{av} = \frac{S}{t}$	
	Also $V_{av} = \frac{v+u}{2}$	
	Therefore $\frac{s}{t} = \frac{v+u}{2}$	
	That is $v + u = \frac{2S}{t}$ (1)	
	But $v - u = at$ (2)	
	Multiplying (1) and (2) $(v+u)(v-u) = \frac{2S}{t}at$	
	$v^2 - u^2 = 2 aS$	
	$V^2 = u^2 + 2as$	
	This is the velocity-displacement relation.	
i	à	