PHYSOL-3 EXAMINATION SERIES
Exam-1 CHAPTERS 1,2 \& 3
SUNDAY 01-05-2022 @ 7.00pm
Answerkey
Answer any 3 questions from 1 to 4 each carries 1 score
1 (iii)Gravitation force 1
2 Charge 1
3 d) ≥ 1 1
4 Displacement 1
Answer any 5 questions from 5 to 10 each carries 2 score
5 1. Momentum and Impulse.
2. Work, energy,Torque 23. Angular momentum and Planck's constant4. Pressure and Stress
$7 \mathrm{~g}=\mathrm{GM} / \mathrm{r}^{2}$ 2if r is reduced by 4%,then percentage change in $g=2 \times 4 \%=8 \%$.
8 a) State of rest

a) Stat
b) State of Motion

9

Distance $=\pi \mathrm{R}$
Displacement $=P P^{\prime}=\sqrt{\left(\pi R^{2}\right)+\left(2 R^{2}\right)}=R \sqrt{\pi^{2}+4}$
10 The slope is given by Slope $=\tan \theta$

$$
\begin{aligned}
& =\frac{\Delta x}{\Delta t} \\
& =\text { velocity. }
\end{aligned}
$$

That is the slope of position time graph gives the Velocity.

Answer any 4 questions from 11 to 14 each carries 3 score

11	Coefficient of viscosity Force/area x velocity gradient $\left[\mathrm{ML}^{-1} \mathrm{~T}^{-1}\right]$ Gravitational constant Force $\mathrm{x}(\text { distance })^{2} /(\text { mass })^{2}$ $\left[\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2}\right]$ Modulus of elasticity Force/area x number $\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]$	3
12	Centripetal force $F \alpha m^{a} v^{b} r^{c}$ $\begin{equation*} \text { ie., } \quad F=k^{\mathrm{a}} \mathrm{v}^{\mathrm{b}} \mathrm{r}_{\mathrm{r}}^{\mathrm{c}} \tag{1} \end{equation*}$ Taking dimensions $\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-2}=\left(\mathrm{M}^{1}\right)^{\mathrm{a}}\left(\mathrm{L}^{1} \mathrm{~T}^{-1}\right)^{\mathrm{b}}\left(\mathrm{L}^{1}\right)^{\mathrm{C}}$ $\begin{aligned} & \mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-2}=\mathrm{M}^{\mathrm{a}} \mathrm{~L}^{\mathrm{b}} \mathrm{~T}^{-\mathrm{b}} \mathrm{~L}^{\mathrm{c}} \\ & \mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-2}=\mathrm{M}^{\mathrm{a}} \mathrm{~L}^{\mathrm{b}+\mathrm{c}} \mathrm{~T}^{-\mathrm{b}} \end{aligned}$ Equating dimensions on both sides $a=1 \quad b=2 \quad c=-1 \quad \text { also given } k=1$ Thus equation (1) becomes $F=\frac{m v^{2}}{r}$	
13	$\begin{aligned} & \text { Average velocity }=0 \quad \text { (because total displacement }=0 \text {) } \\ & \qquad \begin{aligned} & \text { Average speed }=\frac{\text { Total distance }}{\text { Total time }} \\ &=\frac{S+S}{t_{1}+t_{2}} \\ &=\frac{2 S}{\frac{S}{V_{1}}+\frac{S}{V_{2}}} \\ &=\frac{2 V_{1} V_{2}}{V_{1}+V_{2}} \\ &=\frac{2 \times 60 \times 90}{150}=72 \mathrm{~km} / \mathrm{hr} \end{aligned} \end{aligned}$	
14	a) By the equation of motion, $v^{2}=u^{2}+2 a s$ Here $\mathrm{v}=0 \mathrm{a}=-\mathrm{a}$ retardation, $\mathrm{S}-->$ Stopping distances Therefore $0=u^{2}-2$ as Stopping distance $S=\frac{u^{2}}{2 a}$	1 1 1

b) Stopping distance $S=\frac{u^{2}}{2 a}$

If $u=2 u$, then $S^{\prime}=\frac{(2 u)^{2}}{2 a}=\frac{4 u^{2}}{2 a}=4 S$
That is Stopping distance becomes four times.

Answer any 2 questions from 15 to 17 each carries 2 score

15 a)It states that " For the correctness of an equation the dimension all the terms should be same"
b) (i) Principle of homogeneity of dimensions.
(ii) Dimension of LHS [PV] $=\mathrm{ML} \mathrm{T}^{-2} \mathrm{~L}$

$$
=M L^{2} T^{-2}
$$

Dimens ion of RHS $[\mathrm{Fx}]=\mathrm{ML} \mathrm{T}^{1} \mathrm{~L}^{-2}$

$$
=\mathrm{ML}^{-} \mathrm{T}
$$

ie. Dimension of LHS = Dimension of RHS Thus the equation is correct.

16 a) iii) a straight line inclined to the time axis.
b) Second equation of motion OR Displacement time relation:

From the graph
Displacement $\mathrm{S}=$ Area under the graph AB

$=$ Area of rectangle OADE + Area of triangle ADB
$=O A \times O E+\frac{1}{2} D B \times A D$
$=u \times t+\frac{1}{2}(v-u) \times t$
$=u t+\frac{1}{2} a t \times t$
$S=u t+\frac{1}{2} a t^{2}$
This is the displacement - time relation.
c) i) An object with constant velocity has always constant speed.

17 a) Velocity-time relation: $v=u+a t$
Let u--> initial velocity
v-->final velocity
a-->acceleration
t-->time.
We have acceleration $=\frac{\text { Change invelocity }}{\text { time }}$

$$
\begin{aligned}
& a=\frac{v-u}{t} \\
& v-u=a t \\
& v=u+a t \text { This is the velocity -time relation. }
\end{aligned}
$$

b) Velocity-Displacement relation: $v^{2}=u^{2}+2 a s$

Let S-> Displacement u->initial velocity v--> final velocity a->acceleration t->time.
We have Average velocity $=\frac{\text { Total displacement }}{\text { Time }}$

$$
V_{a v}=\frac{S}{t}
$$

Also $\quad V_{a v}=\frac{v+u}{2}$
Therefore $\quad \frac{s}{t}=\frac{v+u}{2}$
That is $v+u=\frac{2 S}{t}$
But $\quad v-u=a t$
Multiplying (1) and (2)

$$
\begin{align*}
& (v+u)(v-u)=\frac{2 S}{t} a t \tag{2}\\
& v^{2}-u^{2}=2 a S \\
& v^{2}=u^{2}+2 \mathrm{as}
\end{align*}
$$

This is the velocity-displacement relation.

