PHYSOL-3 EXAMINATION SERIES FOR PLUS ONE CHAPTERS 4,5,6 & 7 SUNDAY 08-05-2022 @ 7.00pm

P3ES-02

TIME: 1 HOUR

MAXIMUM SCORE:30

General Instructions to Students

- There is a **'cool-off time'** of 15 minutes in addition to maximum writing time
- Use cool-off time to get familiarise with questions and their answers
- Read questions and instructions carefully before answering
- Calculations, figures, graphs should be shown in the answer sheet itself
- You can write questions as per instruction in each section to get a maximum score of 30
- Electronic devices except **non-programmable calculators** are not allowed in the examination

Answer any 3 questions from 1 to 5. Each carries 1 score

1	At the top of a projectile vertical velocity of the object will be			1
2	If $ \vec{A} + \vec{B} = \vec{A} - \vec{B} $, what is the angle between \vec{A} and \vec{B}			1
3	The rotational analogue of mass is			
4	A machine gun fires a bullet of mass 40 g with a velocity of 1200 ms ⁻¹ . The man holding it can exert a maximum force of 144 N on the gun. How many bullets can he fire per second at the most? a) one b) four c) two d) three			
5	A standing passenger in a moving bus tends to fall forward while the driver applies a sudden brake. It is due to(Inertia of Rest/Inertia of Motion)			
<mark>Ansv</mark> 6		<mark>5 questions from 6 to 13. Each</mark> ntal range is equal to 4 times maximu	<i>carries 2 score</i> um height. Find the angle of projection?	2
7	A ball thrown by one player is caught by another player in 5 seconds then calculate the maximum height reached by the ball ($g= 10 \text{ m/s}^2$)			2
8	Using Newton's second law of motion, derive the equation F = ma			
9	Match the following			
	SL No	А	В	2
	1	Newton's First law	Change in momentum.	
	2	Conservation of Linear momentum	Action 👄 Reaction	
	3	Newton's third law	Law of inertia	
	4	Impulse	Momentum before collision = Momentum after collision	
10	Force and displacement vector is given as $\vec{F}=3\hat{i}+4\hat{j}-5\hat{k}$ and $\vec{d}=5\hat{i}+4\hat{j}+3\hat{k}$ a) Find work done. b) State the conditions under which a force does no work.			1 1
11	Derive an expression for potential energy of a stretched string.			2
TT		Explain the parallel axes theorem about moment of inertia.		

13	Derive the relation between torque and angular momentum.	2
<mark>Ansv</mark>	ver any 3 questions from 14 to 17. Each carries 3 score	
14	A stone is thrown with the help of a sling with initial velocity 'u' at an angle 'θ' from the horizontal.	
	b) Derive the expression for the maximum height reached by the stone.	2
15	A ball of mass 50g is moving with a velocity 20 m/s hit on a wall and bounce back with same speed. The time of contact between ball and wall is 0.1sec. Find the force due to hitting?	3
16	A motor pump can fill water in a tank of 40 m^3 at a height 5m from the ground in 30 minutes. Find the power required for this process? Given density of water is 1000 kg/m ³ .	3
17	Moment of inertia of a uniform disc about an axis passing through the centre and perpendicular to the plane is MR ² /2 a) State Perpendicular axes theorem b) Derive the expression for moment of inertia of a uniform disc about an axis passing through the diameter.	1 2
<mark>Ansv</mark>	ver any 2 questions from 18 to 20. Each carries 4 score	
18	With the help of a diagram derive the expression for the resultant of two vectors in parallelogram law of vector addition (Derive the law of cosines)	4
19	To reduce friction and accident by skidding the roads are banked at curves. a)What is meant by banking of roads? b)Sketch the schematic diagram of a vehicle on a banked road with friction and mark the various forces. c) Derive an expression for maximum safe speed of a vehicle on a banked road with friction.	1 1 2
20	 a) State the work energy theorem. b) Show that the potential energy of a body is completely converted into kinetic energy during its free fall under the gravity. c) A man carefully brings down a glass sheet from a height 2 m to the ground. The work done by him is (i) negative (ii) zero (iii) positive (iv) unpredictable 	1 2 1
	a) In the absence of external torqueof an isolated system remains constantb) Why planets move faster at near region of sun and slower when they are far away?	1 3
	PHYSOL-The solution for learning F Prepared by Higher Secondary Physics Teachers Association Malap	