PHYSOL-3 EXAMINATION SERIES FOR PLUS ONE CHAPTERS 8,9,10 & 11 SUNDAY 15-05-2022 @ 7.00pm

P3ES-03

TIME: 1 HOUR

MAXIMUM SCORE:30

General Instructions to Students

- There is a **'cool-off time'** of 15 minutes in addition to maximum writing time
- Use cool-off time to get familiarise with questions and their answers
- Read questions and instructions carefully before answering
- Calculations, figures, graphs should be shown in the answer sheet itself
- You can write questions as per instruction in each section to get a maximum score of 30
- Electronic devices except **non-programmable calculators** are not allowed in the examination

Answer any 3 questions from 1 to 5. Each carries 1 score

1	Acceleration due to gravity is independent of (mass of earth /mass of body)	1
2	The ratio of Tensile stress to Longitudinal strain is called	1
3	Pick the odd one out from the following a) Atomiser b) Hydraulic Lift c) Venturimeter d) Aerofoil	1
4	Viscosity of gases(increases / decreases) with temperature, whereas viscosity of liquids(increases / decreases) with temperature	1
5	Write different modes of heat transfer.	1

Answer any 5 questions from 6 to 13. Each carries 2 score

C				
6	Derive an expression for variation of 'g' with height 'h' from the surface earth.			
7	State Kepler's third law of planetary motion.			
8	Which is more elastic, steel or rubber? Why?			
9	Which is more elastic A, B or C? Justify your answer.	2		

Prepared by Higher Secondary Physics Teachers Association Malappuram

		o is tastier than cold g of cloths is easier i	in warm water than cold water. Why?	1 1
12	The below graph represents temperature versus heat for water at 1 atm. pressure.			
	Tem			
	Heat energy / mode Match the following using the above graph.			
	Graph	Process	State	
	i) BC	b) Sublimation	p) Water	
	ii) DE	a) Melting	q) Ice	4
		c) Regelation	r)Partially Solid and liquid	
		d) Vaporisation	s) Partially liquid and vapour	
13	_		n body is 98.6° F. What is the corresponding	
	temperature			
nsi	-		17 Each carries 3 score	
	wer any 3 qu	estions from 14 to	17. Each carries 3 score	
14	wer any 3 qu Find the hei	estions from 14 to ight at which value	17. Each carries 3 score of g at that point is equal to value of g at a depth	
14	wer any 3 qu Find the hei 600km fron	estions from 14 to ight at which value n the surface?	of g at that point is equal to value of g at a depth	
	wer any 3 qu Find the hei 600km fron a) What is a	estions from 14 to ight at which value n the surface? an elastomer? Give	of g at that point is equal to value of g at a depth examples.	
14 15	wer any 3 qu Find the hei 600km fron a) What is a b) The recip	estions from 14 to ight at which value n the surface? an elastomer? Give procal of bulk modu	of g at that point is equal to value of g at a depth examples. Ilus is called	
14	wer any 3 qu Find the hei 600km fron a) What is a b) The recip Hydraulic li	estions from 14 to ight at which value n the surface? an elastomer? Give procal of bulk modu ift is a device used t	of g at that point is equal to value of g at a depth examples.	
14 15 16	wer any 3 qu Find the hei 600km fron a) What is a b) The recip Hydraulic li the working	estions from 14 to ight at which value in the surface? an elastomer? Give procal of bulk modu ift is a device used to g of this device.	of g at that point is equal to value of g at a depth examples. Ilus is called to lift heavy loads. Explain the principle behind	
14 15	wer any 3 qu Find the hei 600km fron a) What is a b) The recip Hydraulic li the working The coeffic Linear Expa	ight at which value ight at which value in the surface? an elastomer? Give procal of bulk modu ift is a device used to g of this device. ient of thermal expansion α ii) Coeffic	of g at that point is equal to value of g at a depth examples. Ilus is called	
14 15 16	wer any 3 qu Find the hei 600km fron a) What is a b) The recip Hydraulic li the working The coeffic Linear Expa Volume Exp	ight at which value ight at which value in the surface? an elastomer? Give procal of bulk modu ift is a device used to g of this device. ient of thermal expansion α ii) Coeffic pansion γ	of g at that point is equal to value of g at a depth examples. ilus is called to lift heavy loads. Explain the principle behind ansion in solids are mainly i) Coefficient of the top for the expansion β iii) Coefficient of	
14 15 16	wer any 3 qu Find the hei 600km fron a) What is a b) The recip Hydraulic li the working The coeffic Linear Expa Volume Exp a) What is t	estions from 14 to ight at which value in the surface? an elastomer? Give procal of bulk modu ift is a device used to g of this device. ient of thermal expansion α ii) Coeffic pansion γ he ratio of α , β and	of g at that point is equal to value of g at a depth examples. ilus is called to lift heavy loads. Explain the principle behind ansion in solids are mainly i) Coefficient of the top for the expansion β iii) Coefficient of	
14 15 16 17	wer any 3 qu Find the hei 600km fron a) What is a b) The recip Hydraulic li the working The coeffic Linear Expa Volume Exp a) What is t b) Invar is u	estions from 14 to ight at which value in the surface? an elastomer? Give procal of bulk modu ift is a device used to g of this device. ient of thermal expansion α ii) Coeffic pansion γ he ratio of α , β and used for making per	of g at that point is equal to value of g at a depth examples. dus is called to lift heavy loads. Explain the principle behind ansion in solids are mainly i) Coefficient of eient of Area Expansion β iii) Coefficient of d γ ? dulum of clocks. Why?	
14 15 16 17	wer any 3 qu Find the hei 600km fron a) What is a b) The recip Hydraulic li the working The coeffic Linear Expa Volume Exp a) What is t b) Invar is u	estions from 14 to ight at which value in the surface? an elastomer? Give procal of bulk modu ift is a device used to g of this device. ient of thermal expansion ansion α ii) Coeffic pansion γ he ratio of α , β and used for making per- testions from 18 to	of g at that point is equal to value of g at a depth examples. dus is called to lift heavy loads. Explain the principle behind ansion in solids are mainly i) Coefficient of eient of Area Expansion β iii) Coefficient of d γ ? adulum of clocks. Why? 20. Each carries 4 score	
14 15 16 17	wer any 3 qu Find the hei 600km from a) What is a b) The recip Hydraulic li the working The coeffic Linear Expa Volume Exp a) What is t b) Invar is u wer any 2 qu Nowadays y	estions from 14 to ight at which value in the surface? an elastomer? Give procal of bulk modu ift is a device used to g of this device. ient of thermal expansion ansion α ii) Coeffic pansion γ he ratio of α , β and used for making per- testions from 18 to a we are familiar with	of g at that point is equal to value of g at a depth examples. Ilus is called to lift heavy loads. Explain the principle behind ansion in solids are mainly i) Coefficient of tient of Area Expansion β iii) Coefficient of d γ ? adulum of clocks. Why? 20. Each carries 4 score a satellites.	
14 15 16 17	wer any 3 qu Find the hei 600km fron a) What is a b) The recip Hydraulic li the working The coeffic Linear Expa Volume Exp a) What is t b) Invar is u wer any 2 qu Nowadays v a) Why doe	estions from 14 to ight at which value in the surface? an elastomer? Give brocal of bulk modu ift is a device used to g of this device. ient of thermal expansion α ii) Coeffic pansion α ii) Coeffic pansion γ he ratio of α , β and used for making per testions from 18 to we are familiar with s satellite need no f	of g at that point is equal to value of g at a depth examples. dus is called to lift heavy loads. Explain the principle behind ansion in solids are mainly i) Coefficient of eient of Area Expansion β iii) Coefficient of d γ ? dulum of clocks. Why? 20. Each carries 4 score in satellites. uel to go around a planet in its fixed orbit?	
14 15 16 17	wer any 3 qu Find the hei 600km from a) What is a b) The recip Hydraulic li the working The coeffic Linear Expa Volume Exp a) What is t b) Invar is u wer any 2 qu Nowadays v a) Why doe b) Obtain a	estions from 14 to ight at which value in the surface? an elastomer? Give procal of bulk modu ift is a device used to g of this device. ient of thermal expansion ansion α ii) Coeffic pansion γ he ratio of α , β and used for making per estions from 18 to we are familiar with s satellite need no f an equation for the	of g at that point is equal to value of g at a depth examples. dus is called to lift heavy loads. Explain the principle behind ansion in solids are mainly i) Coefficient of cient of Area Expansion β iii) Coefficient of d γ ? adulum of clocks. Why? 20. Each carries 4 score a satellites. uel to go around a planet in its fixed orbit? orbital velocity of a satellite revolving around	
14 15 16 17	wer any 3 qu Find the hei 600km fron a) What is a b) The recip Hydraulic li the working The coeffic Linear Expa Volume Exp a) What is t b) Invar is u wer any 2 qu Nowadays v a) Why doe b) Obtain a earth. Henc	estions from 14 to ight at which value in the surface? an elastomer? Give brocal of bulk modu ift is a device used to g of this device. ient of thermal expansion α ii) Coeffic pansion α ii) Coeffic pansion γ he ratio of α , β and used for making per estions from 18 to we are familiar with s satellite need no f an equation for the ce explain why the	of g at that point is equal to value of g at a depth examples. dus is called to lift heavy loads. Explain the principle behind ansion in solids are mainly i) Coefficient of tient of Area Expansion β iii) Coefficient of d γ ? adulum of clocks. Why? 20. Each carries 4 score in satellites. uel to go around a planet in its fixed orbit? orbital velocity of a satellite revolving around orbital velocity of a satellite is independent of	
14 15 16 17	wer any 3 qu Find the hei 600km from a) What is a b) The recip Hydraulic li the working The coeffic Linear Expa Volume Exp a) What is t b) Invar is u wer any 2 qu Nowadays v a) Why doe b) Obtain a earth. Henc mass of the	estions from 14 to ight at which value in the surface? an elastomer? Give orocal of bulk modu ift is a device used to g of this device. ient of thermal expansion ansion α ii) Coeffic pansion γ he ratio of α , β and used for making per estions from 18 to we are familiar with s satellite need no f an equation for the satellite but depend	of g at that point is equal to value of g at a depth examples. dus is called to lift heavy loads. Explain the principle behind ansion in solids are mainly i) Coefficient of tient of Area Expansion β iii) Coefficient of d γ ? adulum of clocks. Why? 20. Each carries 4 score in satellites. uel to go around a planet in its fixed orbit? orbital velocity of a satellite revolving around orbital velocity of a satellite is independent of ds on the mass of the planet.	
14 15 16 17	wer any 3 qu Find the hei 600km from a) What is a b) The recip Hydraulic li the working The coeffic Linear Expa Volume Exp a) What is t b) Invar is u wer any 2 qu Nowadays v a) Why doe b) Obtain a earth. Henc mass of the c) The moo	estions from 14 to ight at which value in the surface? an elastomer? Give orocal of bulk modu ift is a device used to g of this device. ient of thermal expansion ansion α ii) Coeffic pansion γ he ratio of α , β and used for making per estions from 18 to we are familiar with s satellite need no f an equation for the satellite but depend	of g at that point is equal to value of g at a depth examples. ilus is called to lift heavy loads. Explain the principle behind ansion in solids are mainly i) Coefficient of tient of Area Expansion β iii) Coefficient of d γ ? adulum of clocks. Why? 20. Each carries 4 score in satellites. uel to go around a planet in its fixed orbit? orbital velocity of a satellite revolving around orbital velocity of a satellite is independent of ls on the mass of the planet. atmosphere around it. Give reason.	

	 b) A wire is fixed at one end is subjected to increasing load at the other end. Draw a curve between Stress and Strain and with the help of the curve, explain the terms i)proportional limit ii)yield point iii) permanent set iv)fracture point c) How does this curve may be used to distinguish between ductile and brittle substances? 	2
20	In case of fluids law of conservation of energy can be explained with Bernoulli's principle. State and prove Bernoulli's principle.	4