FIRST YEAR HIGHER SECONDARY MODEL EXAMINATION JUNE 2022

Part III

CHEMISTRY

Scores (8 x 2 = 16) MAXIMUM MARKS : 16 They start from cathode, more rays are produced from the space between cathode and anode and move towards anode They are material particles They travel in straight lines. They are deflected by both electric and magnetic field. Deflection in the electric field is towards positive plate shows that they are negatively charged particles They does not depend on the nature of the gas inside discharge tube The charge to mass ratio (e/m) is same for all gases (Any Two) Paul's exclusion principle ii) An orbital is the region in space around the nucleus where there is maximum probability of finding an electron having a specific energy. Here one s orbital and three p orbitals undergo hybridisation, and four sp ³ hybridized orbitals are formed. CH ₄ OR CCl ₄ OR NH ₃ OR H ₃ O OR Any suitable example CH ₄ OR CCl ₄ OR NH ₃ OR H ₃ O OR Any suitable example O → atomic number 8, Electronic configuration 2,6. Oxygen has six valance electrons. Bonded with two hydrogen atoms. So Oxygen has two bond pairs and two lone pairs around it. There are three type repulsions. Bond pair-bond pair repulsion < bond pair-lone pair repulsion < lone pair - lone pair repulsion. Due to these repulsions bond angle is reduced from tetrahedral angle to 104.5°. Geometry is bent shape or inverted V shape. 5 i) Oxidation: Increase in oxidation number. Reduction: Decrease in oxidation number. Reduction: Decrease in oxidation number. Ii) Zn is reducing agent (reductant) Cu ²⁺ is oxidizing agent (oxidant).	Q.		SECTION 1: Answer any 6 questions from 1 to 11. Each carries 2	Split	Total Score
1 They start from cathode, more rays are produced from the space between cathode and anode and move towards anode They are material particles They travel in straight lines. They are deflected by both electric and magnetic field. Deflection in the electric field is towards positive plate shows that they are negatively charged particles They does not depend on the nature of the gas inside discharge tube The charge to mass ratio (e/m) is same for all gases (Any Two) 2 i) Pauli's exclusion principle ii) An orbital is the region in space around the nucleus where there is maximum probability of finding an electron having a specific energy. 4 Here one s orbital and three p orbitals undergo hybridisation, and four sp¹ hybridized orbitals are formed. CH ₄ OR CCI ₄ OR NH ₃ OR H ₂ O OR Any suitable example 1 O → atomic number 8, Electronic configuration 2,6. Oxygen has six valance electrons. Bonded with two hydrogen atoms. So Oxygen has two bond pairs and two lone pairs around it. There are three type repulsions. Bond pair-bond pair repulsion < bond pair: lone pair repulsion < lone pair -lone pair repulsion. Due to these repulsions bond angle is reduced from tetrahedral angle to 104.5 °. Geometry is bent shape or inverted V shape. 5 i) Oxidation: Increase in oxidation number. Reduction: Decrease in oxidation number. Reduction: Decrease in oxidation number. Ii) Zn is reducing agent (reductant) Cu²² is oxidizing agent (roductant).			The Market Control of the Control of		
cathode and anode and move towards anode They are material particles They travel in straight lines. They are deflected by both electric and magnetic field. Deflection in the electric field is towards positive plate shows that they are negatively charged particles They does not depend on the nature of the gas inside discharge tube The charge to mass ratio (e/m) is same for all gases (Any Two) 2 i) Pauli's exclusion principle 1 ii) An orbital is the region in space around the nucleus where there is maximum probability of finding an electron having a specific energy. 4 Here one s orbital and three p orbitals undergo hybridisation, and four sp³ hybridized orbitals are formed. CH₄ OR CCI₄ OR NH₃ OR H₃O OR Any suitable example 1 O→ atomic number 8, Electronic configuration 2,6. Oxygen has six valance electrons. Bonded with two hydrogen atoms. So Oxygen has two bond pairs and two lone pairs around it. There are three type repulsions. Bond pair-bond pair repulsion. Due to these repulsions bond angle is reduced from tetrahedral angle to 104.5°. Geometry is bent shape or inverted V shape. 5 i) Oxidation: Increase in oxidation number. Reduction: Decrease in oxidation number. Reduction: Decrease in oxidation number. ii) Zn is reducing agent (reductant) Cu²* is oxidizing agent (oxidant).	ο.				
They does not depend on the nature of the gas inside discharge tube The charge to mass ratio (e/m) is same for all gases (Any Two) 2	1		cathode and anode and move towards anode They are material particles They travel in straight lines. They are deflected by both electric and magnetic field. Deflection in the electric field is towards positive plate shows		2
The charge to mass ratio (e/m) is same for all gases (Any Two) Pauli's exclusion principle ii) An orbital is the region in space around the nucleus where there is maximum probability of finding an electron having a specific energy. Here one s orbital and three p orbitals undergo hybridisation, and four sp³ hybridized orbitals are formed. CH ₄ OR CCl ₄ OR NH ₃ OR H ₂ O OR Any suitable example O → atomic number 8, Electronic configuration 2,6. Oxygen has six valance electrons. Bonded with two hydrogen atoms. So Oxygen has two bond pairs and two lone pairs around it. There are three type repulsions. Bond pair-bond pair repulsion < bond pair-lone pair repulsion < lone pair - lone pair net trahedral angle to 104.5°. Geometry is bent shape or inverted V shape. 5 i) Oxidation: Increase in oxidation number. Reduction: Decrease in oxidation number. Reduction: Decrease in oxidation number. Zn is reducing agent (reductant) Cu²* is oxidizing agent (oxidant).					
2 i)			The charge to mass ratio (e/m) is same for all gases		
maximum probability of finding an electron having a specific energy. Here one s orbital and three p orbitals undergo hybridisation, and four sp³ hybridized orbitals are formed. CH ₄ OR CCl ₄ OR NH ₃ OR H ₂ O OR Any suitable example O → atomic number 8 , Electronic configuration 2,6 . Oxygen has six valance electrons. Bonded with two hydrogen atoms. So Oxygen has two bond pairs and two lone pairs around it. There are three type repulsions. Bond pair-bond pair repulsion. Due to these repulsions bond angle is reduced from tetrahedral angle to 104.5°. Geometry is bent shape or inverted V shape. 5 i) Oxidation: Increase in oxidation number. Reduction: Decrease in oxidation number. ii) Zn is reducing agent (reductant) Cu²* is oxidizing agent (oxidant).	2	i)		1	2
four sp³ hybridized orbitals are formed. CH ₄ OR CCl ₄ OR NH ₃ OR H ₂ O OR Any suitable example 1 O → atomic number 8, Electronic configuration 2,6. Oxygen has six valance electrons. Bonded with two hydrogen atoms. So Oxygen has two bond pairs and two lone pairs around it. There are three type repulsions. Bond pair-bond pair repulsion < bond pair- lone pair repulsion < lone pair – lone pair repulsion. Due to these repulsions bond angle is reduced from tetrahedral angle to 104.5°. Geometry is bent shape or inverted V shape. 5 i) Oxidation: Increase in oxidation number. Reduction: Decrease in oxidation number. ii) Zn is reducing agent (reductant) Cu²+ is oxidizing agent (oxidant). 1 2		ii)		1	
O → atomic number 8 , Electronic configuration 2,6 . Oxygen has six valance electrons. Bonded with two hydrogen atoms. So Oxygen has two bond pairs and two lone pairs around it. There are three type repulsions. Bond pair-bond pair repulsion < bond pair- lone pair repulsion < lone pair − lone pair repulsion. Due to these repulsions bond angle is reduced from tetrahedral angle to 104.5 °. Geometry is bent shape or inverted V shape. Oxidation: Increase in oxidation number. Reduction: Decrease in oxidation number. ii) Zn is reducing agent (reductant) Cu²+ is oxidizing agent (oxidant).	3		four sp ³ hybridized orbitals are formed.	1	2
Oxygen has six valance electrons. Bonded with two hydrogen atoms. So Oxygen has two bond pairs and two lone pairs around it. There are three type repulsions. Bond pair-bond pair repulsion < bond pair- lone pair repulsion < lone pair — lone pair repulsion. Due to these repulsions bond angle is reduced from tetrahedral angle to 104.5 °. Geometry is bent shape or inverted V shape. 5 i) Oxidation: Increase in oxidation number. Reduction: Decrease in oxidation number. ii) Zn is reducing agent (reductant) Cu²+ is oxidizing agent (oxidant).			CH ₄ OR CCl ₄ OR NH ₃ OR H ₂ O OR Any suitable example	1	
5 i) Oxidation: Increase in oxidation number. Reduction: Decrease in oxidation number. ii) Zn is reducing agent (reductant) Cu ²⁺ is oxidizing agent (oxidant). 2 ii) (a) CH ₄ 1 2	4		Oxygen has six valance electrons. Bonded with two hydrogen atoms. So Oxygen has two bond pairs and two lone pairs around it. There are three type repulsions. Bond pair-bond pair repulsion < bond pair- lone pair repulsion < lone pair – lone pair repulsion. Due to these repulsions bond angle is reduced from tetrahedral angle to 104.5 °.		2
Reduction: Decrease in oxidation number. Ii) Zn is reducing agent (reductant) Cu ²⁺ is oxidizing agent (oxidant). [A iii	5	i)		1/2 + 1/2	2
Cu ²⁺ is oxidizing agent (oxidant). 6 i) (a) CH ₄ 1 2		17.00	Reduction: Decrease in oxidation number.		
		ii)		1/2 + 1/2	
ii) Sodium hava mata phosphata is commercially known as calgon 1	6	i)	(a) CH ₄	1	2
I III I JUULUII IIEAA IIIELA DIIUSDIIALE IS CUIIIIIELLIAIIV KIIUWII AS CAIRUII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		ii)	Sodium hexa meta phosphate is commercially known as calgon	1	+

7		Column A	Column	3½ X 4	2
		(a) Quick lime	CaO		
		(b) Plaster of Paris	CaSO ₄ . ½	H ₂ O	
		(c) Dead burned plaster	CaSO ₄		
		(d) Gypsum	CaSO ₄ . 2	H ₂ O	
8		In diborane, each boron is in sp ³ hybridisation. The two boron atoms and four hydrogen atoms lie in one plane	e.		2
		These four hydrogen atoms are called terminal hydrogen ator	ms.		
		The other two hydrogen atoms lie above and below this plane.	•		
		These hydrogen atoms are called bridging hydrogen atoms.	2-1		
		The four terminal B-H bonds are 2centre 2 electron bonds (2c- The two bridged B-H-B bonds are 3centre 2 electron bonds (3c	-		
		Thus diborane is an electron deficient compound.	. – Zej.		
		Thus diboratie is all electron dencient compound.			
		• •			
		(H)			
		(D) 120°			
		(H) (B) (B) (10 mm)			
		(B))			
		134			
		(H) (H)			
		B B B B			
		() () H () H			
		H H			
9	i)	3-chloropropanal	Y.	1	2
	ii)	UH		1	7 1
		CH ₃ - CH - CH=CH - CH ₃ RS, THRISSU	R		
		Pent-3-en-2-ol		-	
10	i)	CH ₃ + < CH ₃ -CH ₂ + < (CH ₃) ₂ CH+ < (CH ₃) ₃ C+		1	2
	ii)	Inductive effect , Hyper conjugation		1	-
4		(i) For dry cleaning of cloths liquid carbon dioxide is used			2
11		(ii) For bleaching of paper hydrogen peroxide is used.			

	SECTION 2 (8 x 3 = 24		y 8 questions		23. Each carries 3 sco	res		Split Score	Total Score
12	Elements Atomic mass Hydrogen 1		Percentage (%)	Perc	e number of moles entage tic mass	Simple ratio	Whol num ratio		3
			4.07% 4.07/1 =4	.07	4.07/2.01 = 2.02	2			
	Carbon	12	24.27%	24.27/12	=2.02	2.02/2.01 =1	1		
	Chlorine	35.5	71.65 %	71.65/35.	5=2.01	2.01/2.01 =1	1		
		Molecular ma $n=rac{Mole}{Empirica}$	mula mass = (1 ass = 98.96 cular mass l formula mass	$=\frac{98.96}{49.5}=2$	x 2) + (35.5 x 1) = 49 rmula =2 (CH ₂ Cl) = 0				
13	(i)	Molarity	TRY		Molality			2	3
		The second secon	defined as the solute in one n.		Molality is defined a of moles of solute in of the solvent.				
		Molarity Number of mo Volume of sol W _B X 1000 M _B X V _(in mi)	oles of solute ution in litre		$Molality = \frac{Number of so}{Mass of in kilo}$	$\frac{lute}{solvent} = \frac{1}{M_B}$	W _B X 10		
		because it i	epends on tem is related to vo ges with temp	olume,	Molality does not d	2.	perat	ure	
	(ii)	Molarity	TI	ACHE	DO TUDIO	TID		1	
14	(i)				ses) are called <u>represe</u> r		ts.	1	3
	(ii)	isoelectro N³- ,O²	onic species. , F , Na ⁺ , M	g ²⁺ , Al ³⁺	number of electrons ar		ge ,	1	
15	(i)	But contain 10 electrons each) The amount of energy released when an electron is added to isolated gaseous atom is called electron gain enthalpy.						1	3
	(ii)	In fluorine atom , inter electronic repulsion in the 2p sub shell is more, due to the very small size of fluorine atom But in chlorine ,electrons are added to relatively larger 3p sub shell . That is relatively easy. So chlorine has more negative electron gain enthalpy					2		
16		(I) All mo (II) The	the gases are lecules. molecules ar	made up o	f extremely small part d by large distance an e gas molecules.	ticles called	10		3

		accelerate the growth of algae and other plants in river water. This reduces the		
	Port Control		0.000	1
	iii)	Pollution of water by nutrients such as phosphate from detergents and fertilizers	1	7
		present in the polluted water.		
	ii)	It is the amount of oxygen required by micro organism to oxidize organic matter	1	\dashv
		atmospheric temperature.		
	, , , , , , , , , , , , , , , , , , ,	from the sun and prevents it from escaping into outer space resulting in the rise of		
23	i)	Green house effect is the phenomenon in which earth's atmosphere traps the heat	1	3
	ii)	Markownikkov's rule	1	\dashv
		(Minor)		
		1- propene 2- bromopropane (Major) 1-bromopropane		
LL	' [']	$CH_3 - CH = CH_2 + HBr \rightarrow CH_3 - CH - CH_3 + CH_3 - CH_2 - CH_2 - Br$		3
22	i)		2	3
		Mg(HCO ₃) ₂ + 2 Ca(OH) ₂ \rightarrow 2 CaCO ₃ + Mg(OH) ₂ + 2 H ₂ O		
		(ii) Clarks method: By adding lime, bicarbonates are converted as magnesium hydroxide and calcium carbonates. Filtered.		
		M(HCO ₃) ₂ → MCO ₃ + H ₂ O + CO ₂ , (M= Mg, Ca) (ii) Clarks method: By adding lime, bicarbonates are converted as magnesium		
		produced. Filtered.		
	(ii)	(i) Boiling: Insoluble magnesium hydroxide and calcium carbonates are	2	
	/::\	It is due to the presence of bicarbonates of calcium and magnesium.	2	-
21	(i)	Hardness can be removed by boiling is called temporary hardness.	1	3
21	(ii)	Zn + 2 HCl→ ZnCl₂ + H₂	1	1
	/::\	Disproportionation reactions	1	_
		Displacement reactions Dispreparties reactions		
		Decomposition reactions		
20	(i)	Combination reactions	2	3
20	iii)		2	2
	:::\	Due to common ion effect	1	-
	ii)	and so H+ concentration is high. Acidic solution. So PH is less than 7	1	
19	i) ii\	NH ₄ Cl on hydrolysis gives HCl and NH ₄ OH. HCl is strong acid and ionize completely	1	- °
19	10000	AlCl ₃ is electron deficient compound , can accept electron pair and so Lewis acid	1	3
10	(ii)	$\Delta H_f^0 = -393.5 - (-283.0) = -110.5 \text{ kJmol}^{-1}$	2	⊣ ³
18	(i)	Density Density	1	3
	(ii)	Viscosity decreases with rise in temperature.	1	
		$\therefore P_2 = \frac{1.2 \times 120}{180} = 0.8 bar$		
		$1.2 \times 120 = P_2 \times 180$		
17	(i)	$P_1V_1 = P_2V_2$	2	3
		directly proportional to its absolute temperature.		
		energies. However, the average kinetic energy of the molecules is		
		(VII) Different molecules possess different speed and hence different		
		redistribution of energy during such collisions.		
		gain energy in their collisions. However, there may be		
		(VI) Molecular collisions are perfectly elastic ie. There is no net loss or		
		walls of the container.		
		(V) The pressure of the gas is due to the collision of molecules on the		
		TABLES AT 20 MAY STATE OF A AND AS A STATE OF A ADDRESS AND A STATE OF A ADDRESS AND A STATE OF A ADDRESS AND A AD		
		container.		
		motion, they collide with each other and on the walls of the		
		total volume of the gas. (IV) The molecules are in random and rapid motion. During their		
		Total volume of the gas	1	

	eutrophication.	

QNo.	SECT	ION 3 : Answer any 5 questions from 24 – 31. Each carries 4 scores	Split	Total			
	(5 x 4 = 20)		Score	Score			
	MAXI	MUM MARKS: 20					
24	(i)	 (I) The electrons in an atom revolve around the nucleus in circular paths called orbits. These orbits have definite energies called energy shells or energy levels. These are numbered 1,2,3,4, or designated as K,L,M,N, (II) As long as electrons remain in a particular orbit, it does not lose or gain energy. Therefore these orbits are called stationary states. (III) Only those orbits are permitted in which the angular momentum of the electron is a whole number multiple of h/2π. i.e. Angular momentum, myr 	3	4			
		=nh/2 π n = 1,2,3, (IV) Energy is emitted or absorbed by an atom only when an electron in it moves from one orbit to other. The difference in energy , $\Delta E = E_2 - E_1 = hv$					
	(ii)	2p	1/2	1			
		3d	1/2				
25	(i)	$\sigma 1s^2 \ \sigma^* 1s^2 \ \sigma 2s^2 \ \sigma^* 2s^2 \ \pi 2p_x^2 = \pi 2p_y^2 \ \sigma 2p_z^2$	2	4			
	(ii)	There are two types of hydrogen bonds (I) Inter molecular hydrogen bond :- Hydrogen bond between different molecules of same type or different type. It increases the boiling point. e.g., H bonding in HF,H-FH-FH-F (II) Intra molecular hydrogen bond:- Hydrogen bond within the same molecule. It decreases the boiling point. e.g., Hydrogen bonding in Ortho nitro phenol	2				
26	i)	First law of thermo dynamics :- It is law of conservation of energy. It states that energy can neither be created nor destroyed ΔU = q + w	2	4			
	ii)	Gibbs energy is defined as the maximum amount of available energy that can be converted to useful work.					
	iii)	ΔG = ΔH - TΔS	1	1			
27	i)	If a system in equilibrium is subjected to change in concentration, temperature or pressure, the equilibrium shifts in the direction that tends to reduce the effect of the change.	1	4			
	ii)	$Kp = \frac{p(CO)p^3(H_2)}{p(CH_4)p(H_2O)}$	1				
	iii)	a Here as a result of forward reaction, the no. of moles of gaseous species increases. So high pressure favours backward reaction.	1				
		Here forward reaction is endothermic So high temperature favours b forward reaction.	1				
28	(i)	Raw materials: Lime stone(CaCO₃), ammonia (NH₃) and brine solution (NaCl). In this process, carbon dioxide obtained by the decomposition of lime stone is passed through brine solution saturated with ammonia. Sodium bicarbonate is precipitated. It is filtered and heated to get sodium carbonate. By product in this process is calcium chloride. 2 NH₃ + H₂O + CO₂ → (NH₄)₂ CO₃ (NH₄)₂ CO₃ + CO₂ + H₂O → 2 NH₄HCO₃	2	4			

		NULLICO N. Cl. S. N. LICO NULCI	T			
		$NH_4HCO_3 + NaCl \rightarrow NaHCO_3 + NH_4Cl$				
	/::\	2 NaHCO ₃ → Na ₂ CO ₃ + CO ₂ +H ₂ O Due to its small size, high ionisation enthalpy and absence of vacant d-orbitals, Be	2	-		
	(ii)	exhibits anomalous properties.				
20						
29	i)	are formed. This is known as Borax bead test.	2	4		
	ii)	In CCl ₄ , there is no vacant d-orbital in carbon atom. Thus it cannot accommodate lone pair of electrons donated by the oxygen atom of water molecule. So CCl ₄ cannot be	1			
		hydrolysed.		4		
	iii)	In CO ₂ molecule, C atom undergoes undergoes sp hybridization. So it has linear shape. It exist as discrete (separate) molecules and there is only weak attractive between the different CO ₂ molecules. So CO ₂ is gas.	1			
		:Ö=C=Ö:				
		But in silica, each silicon atom undergoes sp ³ hybridisation . Here each silicon atom is tetrahedrally surrounded by four oxygen atoms. So it has three dimensional net work structure and hence it is solid.				
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
30	i)	Dumas method OR Kjeldahl's method	1	4		
	ii)	Sodium fusion extract + nitric acid + silver nitrate → White precipitate (Presence of chlorine)	2	1		
	iii)	Distillation	1			
31	(i)	A cyclic, conjugated, planar system is aromatic if it contains (4n +2) pi electrons in the ring. Where n = 1,2,3 etc	2	4		
	(ii)	H H H H H H H H Eclipsed Staggered	2			

PREPARED BY :YOOSAFALI T K, HSST CHEMISTRY, 9947444175

AN INITIATIVE BY ACT THRISSUR