

Reg. No.:

ME 627

Name :

FIRST YEAR HIGHER SECONDARY MODEL EXAMINATION, JUNE 2022 Part – III

MATHEMATICS (SCIENCE)

Maximum: 60 Scores

Time: 2 Hours

Cool-off Time: 15 Minutes

General Instructions to Candidates:

- There is a 'Cool off time' of 15 minutes in addition to the writing time.
- · Read questions carefully before answering.
- · Calculations, figures and graphs should be shown in the answer sheet itself.
- Malayalam version of the questions is also provided.
- Give equations wherever necessary.
- Electronic devices except non programmable calculators are not allowed in the Examination Hall.

വിദ്യാർത്ഥികൾക്കുള്ള പൊതുനിർദ്ദേശങ്ങൾ :

- നിർദ്ദിഷ്ട സമയത്തിന് പുറമെ 15 മിനിട്ട് 'കൂൾ ഓഫ് ടൈം' ഉണ്ടായിരിക്കും.
- ഉത്തരങ്ങൾ എഴുതുന്നതിന് മുമ്പ് ചോദ്യങ്ങൾ ശ്രദ്ധാപൂർവ്വം വായിക്കണം.
- കണക്ക് കൂട്ടലുകൾ, ചിത്രങ്ങൾ, ഗ്രാഫുകൾ, എന്നിവ ഉത്തരപേപ്പറിൽ തന്നെ ഉണ്ടായിരിക്കണം.
- ചോദ്യങ്ങൾ മലയാളത്തിലും നൽകിയിട്ടുണ്ട്
- അവശ്യമുള്ള സ്ഥലത്ത് സമവാകൃങ്ങൾ കൊടുക്കണം.
- പ്രോഗ്രാമുകൾ ചെയ്യാനാകാത്ത കാൽക്കുലേറ്ററുകൾ ഒഴികെയുള്ള ഒരു ഇലക്ട്രോണിക് ഉപകരണവും പരീക്ഷാഹാളിൽ ഉപയോഗിക്കുവാൻ പാടില്ല.

Answer any 6 questions from 1 to 8. Each carries 3 scores.

 $(6 \times 3 = 18)$

(1)

- 1. a) If a set A has 2 elements, then the number of subsets of A is
 - i) 2
 - ii) 4
 - iii) 6
 - iv) 8
 - b) Write all subsets of $\{1, 2\}$. (1)
 - c) Write the interval (6, 12] in set-builder form. (1)
- 2. a) $\frac{\pi}{4}$ radian = _____ degree. (1)
 - (2) If $\sin x = \frac{3}{5}$, x lies in the second quadrant, find the values of cosx and tanx.
- 3. a) Write the first four terms of the sequence whose n^{th} term is $a_n = 5n + 1$. (1)
 - b) Find the sum of the first n terms of the above sequence. (2)
- a) Find the slope of the line passing through the points (2, 1) and (4, 5). (1)
 - Find the value of x for which the points (x, -1), (2, 1) and (4, 5) are collinear. (2)

- 5. Find the equation of the circles with radius 5 whose centres lie on the x-axis and passing through the point (2, 3).
- 6. a) Coordinate planes divide the space into _____ octants. (1)
 - b) Find the distance between the points (-1, 3, -4) and (1, -3, 4). (2)

7. Evaluate:

a)
$$\lim_{x \to 4} \frac{4x + 3}{x - 2}$$
 (1)

b)
$$\lim_{x \to 1} \frac{x^3 - 1}{x^2 - 1}$$
 (2)

- 8. a) Write the negation of the statement ' $\sqrt{7}$ is rational'.
 - b) Write the contrapositive and converse of the statement 'if a number n is even, then n² is even'. (2)

Answer any 6 questions from 9 to 17. Each carries 4 scores.

 $(6 \times 4 = 24)$

9. a) If A and B are two sets such that
$$A \subset B$$
, then $A \cup B =$ ______(1)

b) If $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, $A = \{2, 4, 6, 8\}$ and $B = \{2, 3, 5, 7\}$, find:

-) A' and B' (1)
- ii) $A \cup B$ and (1)
- iii) Verify that $(A \cup B)' = A' \cap B'$ (1)

(1)

- 10. a) Let $A = \{1, 2, 3, 4, ..., 14\}$, define a relation R from A to A by $R = \{(x, y): y = 3x, \text{ where } x, y \in A\}. \text{ Write R in roster form. Write down the domain and range of R.}$ (3)
 - b) A function f is defined by f(x) = 2x 5. Find the value of f(0). (1)
 - 11. Consider the statement

$$P(n): 1+3+3^2+...+3^{(n-1)} = \frac{3^n-1}{2}$$

- a) Show that P(1) is true.
- b) Prove by the principle of Mathematical Induction that P(n) is true for all n ∈ N.
- 12. a) Evaluate $\frac{7!}{5!}$. (1)
 - b) How many 4 digit numbers can be formed by using the digits 1 to 9 if repetition of digits is not allowed?

 (2)
 - c) $^{17}C_{17} =$ (1)
- - b) Expand $\left(x^2 + \frac{3}{x}\right)^4$, $x \neq 0$.

- 14. The sum of first three terms of a Geometric Progression is $\frac{39}{10}$ and their product is 1. Find the common ratio and the terms of the Geometric Progression. (4)
- 15. a) Write the equation of the x-axis.
 - b) Equation of a line is 3x + 2y 12 = 0. Find its
 - i) slope and (1)
 - ii) x and y intercepts. (2)
- 16. Find the coordinates of the foci. The eccentricity and the length of the latus rectum of the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$. (4)
- 17. One card is drawn from a well shuffled deck of 52 cards. If each outcome is equally likely, calculate the probability that the card will be
 - i) a diamond (1)
 - ii) not an ace (2)
 - iii) a black card (1)

Answer any 3 questions from 18 to 22. Each carries 6 scores. (3×6=18)

18. a) Prove that,

$$\frac{\tan\left(\frac{\pi}{4} + x\right)}{\tan\left(\frac{\pi}{4} - x\right)} = \left(\frac{1 + \tan x}{1 - \tan x}\right)^2 \tag{3}$$

b) Find the general solution for the equation $\cos 3x + \cos 2x = 0$. (3)

19. a) The value of i⁴ is

(1)

b) Find the multiplicative inverse of 1 - i in a + ib form.

(2)

c) Find the polar form of 1 - i.

(3)

20. Solve the system of inequalities graphically.

$$x + 2y \le 8$$

$$2x + y \le 8$$

$$x \ge 0, y \ge 0.$$

(6)

21. a) Find the derivative of sinx from first principle.

(3)

b) Find the derivative of $5 \sin x - 6 \cos x + 7$.

(3)

22. Consider the following data:

Classes:

$$0 - 10$$

$$10 - 20$$

$$20 - 30$$

$$30 - 40$$

$$40 - 50$$

Frequency:

Find:

i) mean

(2)

ii) Variance and standard deviation.

(4)