

# HT-JEE 2010

# **Chemistry Paper II**

# PART I - Chemistry

### SECTION - I

## Single Correct Choice Type

This Section contain 6 multiple choice questions. Each question has four choices (A), (B), (C) and (D) out of which ONLY ONE is correct.

- The species having pyramidal shape is
  - (A) SO3
- (B) BrF<sub>3</sub>
- (C) SiO<sub>3</sub>2-

- $^{\mathbf{T}}$  the structure of the product T is 2.

- NaOH / Brz
- The complex showing a spin-only magnetic moment of 2.82 B.M.is
  - (A) Ni(CO)4
- (B)  $[NiCl_4]^{2-}$  (C)  $Ni(PPh_3)_4$
- (D) [Ni(CN)<sub>4</sub>]<sup>2-</sup>
- (B) Ni+2 = Ar3d 111111 4S 4P 4P 3.

$$\mu = \sqrt{n(n+2)} = 2.82 \text{ BM}$$

The packing efficiency of the two-dimensional square unit cell shown below is



- (A) 39.27 %
- (B) 68.02 %
- (C) 74.05 %
- (D) 78.54 %

- 4. (D) p.f. =  $\frac{2 \times \pi r^2}{a^2}$





$$=\frac{2\times\pi r^2}{8r^2}=\frac{3.14\times100}{4}=78.5\%$$

- Assuming that Hund's rule is violated, the bond order and magnetic nature of diatomic molecule
   B<sub>2</sub> is
  - (A) 1 and diamagnetic
- (B) 0 and diamagnetic
- (C) 1 and paramagnetic
- (D) 0 and paramagnetic

5. **(A)** 
$$BO = (1/2) \times 2 = 1$$

and no unpaired electron



The compounds P,Q and S

were separately subjected to nitration using  $HNO_3$  /  $H_2SO_4$  mixture. The major product formed in each case respectively, is

(A) HO NO<sub>2</sub> 
$$H_3C$$
  $NO_2$   $O_2N$   $O_2$   $O_2N$ 

(B) 
$$H_0 \longrightarrow H_{NO_2} H_{3C} \longrightarrow H_{NO_2} H_{NO_2}$$

6. (C) Electrophilic - substitution takes place at electron rich site.

#### SECTION - II Integer Type

This Section contains a group of **5 questions**. The answer to each of the questions a **single-digit integer**, **ranging** from 0 to 9. The correct digit below the question no. in the ORS is to be bubbled.

7. Silver (atomic weight =  $108 \text{ g}^{\text{mol}-1}$ ) has a density of  $10.5 \text{ gcm}^{-3}$ . The number of silver atoms on a surface of area  $10^{-12} \text{ m}^2$  can be expressed in scientific notation as  $y \times 10^X$ . The value of x is

7. (7) 
$$d = (4 \times 108) / (N \times a^3)$$
  
 $a^3 = (4 \times 108) / (10.5 \times 6 \times 10^{23})$   
 $= (4 \times 18) \times 10^{-23} / (10.5)$   
 $= 6.857 \times 10^{-23}$   
 $= 68.57 \times 10^{-24}$   
 $\therefore a = 4 \times 10^{-8} \text{ cm}$   
 $= 4 \times 10^{-10} \text{ m}$   
 $a^2 = 16 \times 10^{-20} \text{ m}^2$   
 $\therefore \text{ number of unit base} = (10^{-12}) / (16)$ 

:. number of unit base =  $(10^{-12}) / (16 \times 10^{-20}) = (10^{+8} / 16)$ number of atoms =  $(1 / 8) \times 10^8 = 1.25 \times 10^7$ 

 $\therefore x = 7$ 





8. One mole of an ideal gas is taken from  $\bf a$  to  $\bf b$  along two paths denoted by the solid and the dashed lines as shown in the graph below. If the work done along the solid line path is  $W_{\bf s}$  and that along the dotted line path is  $W_{\bf d}$ , then the integer closest to the ratio  $W_{\bf d}/W_{\bf s}$  is



8. (2) 
$$W_d = 4 \times 1.5 + 1 \times 1 + .75 \times 2.5 = 9$$
  
 $W_s = 2.3 \ nRT \log (V_2 / V_1)$   
 $= 2.3 \times 2 \log (5.5 / .5)$   
 $= 4.6 \log 11 = 4.6$   
 $(W_d / d_s) = (9 / 4.6) \approx 2$ 

9. Total number of geometrical isomers for the complex [RhCl(CO)(PPh<sub>3</sub>)(NH<sub>3</sub>)] is

This can exists only in three geometrical form

- Among the following, the number of elements showing only one non-zero oxidation state is
   C, Cl, F, N, P, Sn, Tl, Na, Ti
- 10. (2) Only F and Na can exist in one non zero oxidation state.
- 11. The total number of diprotic acids among the following is

$$H_3PO_3$$
  $H_2CO_3$   $H_3CO_3$ 

$$H_{2}S_{2}O_{7}$$

# Section - III (Paragraph Type)

This section contains 2 paragraphs. Based upon each of the paragraphs 3 multiple choice questions have to be answered. Each of these questions has four choices (A), (B), (C) and (D) out of which ONLY ONE is correct.

#### Paragraph for questions 12 to 14

Two aliphatic aldehydes P and Q react in the presence of aqueous  $K_2CO_3$  to give compound R, which upon treatment with HCN provides compound S. On acidification and heating, S gives the product shown below:

12. The compounds P and Q respectively are





(A) 
$$H_3C$$
  $CH$   $CH$  and  $H_3C$   $CH$ 

(C) 
$$H_3C$$
  $CH_2$   $CH_2$  and  $CH_3$   $CH_3$ 

(D) 
$$H_3C$$
  $CH_2$   $CH_3$   $CH_4$  and  $CH_5$   $CH_5$   $CH_5$ 

12. **(B)** 
$$CH_3 - C - CH_2OH(R)$$
 $CH_3 - C - CH_2OH(R)$ 
 $CH_3 - C - CH_2 - OH(S)$ 
 $CH_3 - C - CH_2 - OH(S)$ 

# 13. The compound Ris

# 13. (A) Answer given above





# 14. The compound Sis



# 14. (D) Answer given above

15. The state S, is

#### Paragraph for questions 15 to 17

The hydrogen-like species  $Li^{2+}$  is in a spherically symmetric state  $S_1$  with one radial node. Upon absorbing light the ion undergoes transition to a state  $S_2$ . The state  $S_2$  has one radial node and its energy is equal to the ground state energy of the hydrogen atom.

- (A) 1s (B) 2s (C) 2p (D) 3s 15. **(B)** It should be a 2s orbital  $(S_4)$ . From this it has gone to  $2p(S_2)$  both having one radial
- 15. (B) It should be a 2s orbital  $(S_1)$ . From this it has gone to  $2p(S_2)$  both having one radial node.
- (A) 0.75 (B) 1.50 (C) 2.25 (D) 4.50 16. **(C)** 'H' has = 13.6 eV Li<sup>+2</sup> has = 13.6 × 9

16. Energy of the state S<sub>1</sub> in units of the hydrogen atom ground state energy is

- $\therefore$  Li<sup>+2</sup> in 2nd state = (13.6 × 9 / 4) = 13.6 × 2.5
- 17. The orbital angular momentum quantum number of the state  $S_2$  is
  (A) 0 (B) 1 (C) 2 (D) 3
- 17. (B) It is in 2p level

#### Section - IV (Matrix Type)

This Section contains 2 questions. Each question has four statements (A, B, C and D) given in Column I and five statements (P, Q, R, S and T) in Column II. Any given statement in Column I can have correct matching with one or more statement(s) given in Column II. For example, if for a given question, statement B matches with the statements given in q and r, then for that particular question, against statement B, darken the bubbles corresponding to Q and R in the ORS

18. Match the reactions in Column I with appropriate options in Column II

|     | Column I                                                                                                                                                                                                 |    | Column II         |                    |  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------------------|--------------------|--|
| (A) | $\bigcirc$ N <sub>2</sub> CI + $\bigcirc$ OH $\frac{NaOH/H_2O}{0 °C}$ $\bigcirc$ N=N- $\bigcirc$ OH                                                                                                      |    | (P)               | Racemic mixture    |  |
| (B) | OH OH H <sub>2</sub> SO <sub>4</sub> H <sub>3</sub> C C-CH <sub>3</sub> (CH <sub>3</sub> CH <sub>3</sub> | Q) | Addition reaction |                    |  |
| (C) | CH CH                                                                                                                                                                                                    | R) | Sub               | stitution reaction |  |





- (D) HS—CI Base S
- (S) Coupling reaction
- (T) Carbocation intermediate
- 18. (A) (RS) Diazonium ion goes for coupling via substitution
  - (B) (T) Pinacole pinacolone goes through +ve ion intermediate
  - (C) (PQ)It goes nucleophilic addition reaction through a complex formation
  - (D) (R) SH is acidic with base. It is 1st converted into a nucleophile and then gives intra substitution.
- 19. All the compounds listed in Column I react with water. Match the result of the respective reactions with the appropriate options listed in Column II.

#### Column I

- (A) (CH<sub>3</sub>)<sub>2</sub>SiCl<sub>2</sub>
- (B) XeF<sub>4</sub>
- (C) Cl2
- (D) VČI

## Column II

- (P) Hydrogen halide formation
- (Q) Redox reaction
- (R) Reacts with glass
- (S) Polymerization
- (T) O, formation

$$\begin{array}{c} 2X e F_4 + 3H_2O \Rightarrow X e + X e O_3 + 3H_2F_2 + F_2 \\ 6X e F_4 + 12H_2O \Rightarrow 4X e + 2X e O_3 + 12H_2F_2 + 3O_2 \\ 6H F + SiO_2 \rightarrow H_2SiF_6 + 2H_2O \end{array}$$

$$VCl_5$$
(unstable)  $\longrightarrow VCl_3$  (can polymerize) +  $Cl_2 \longrightarrow$  can give  $HCl$  and  $O_2$