DEPARTMENT OF GOVERNMENT EXAMINATIONS

HIGHER SECONDARY FIRST YEAR EXAMINATION MAY-2022

KEY ANSWER FOR CHEMISTRY – ENGLISH MEDIUM

Maximum Marks - 70

Answer all the Questions Part -I

15 x 1 = 15

Q.NO	Option	А Туре	Q.NO	Option	В Туре
1	c)	C ₈ H ₁₈	1	a)	1p + 2n
2	b)	- 2ºC	2	c)	(1) – (iv), (2) – (iii), (3) – (i), (4) – (ii)
3	a)	$-C(CH_3)_3 > -CH(CH_3)_2 > -CH_2$ - CH ₃ > -CH ₃	3	b)	NO
4	b)	NO	4	c)	Mass / volume
5	d)	d) Both assertion and reason are true but reason is not the correct explanation of assertion	5	c)	C8H18
6	c)	Mass / volume	6	a)	Lithium
7	b)	for a system at equilibrium Q is always less than the equilibrium constant	7	a)	-C(CH ₃) ₃ > -CH(CH ₃) ₂ >- CH ₂ - CH ₃ > -CH ₃
8	c)	(1) – (iv), (2) – (iii), (3) – (i), (4) – (ii)	8	C)	Stark effect
9	a)	Lithium	9	b)	for a system at equilibrium Q is always less than the equilibrium constant
10	b)	MgCl ₂	10	d)	tautomers
11	a)	1p + 2n	11	b)	MaCl ₂
12	a)	O ₂ ²⁻	12	b)	- 2°C
13	c)	Stark effect	13	a)	O2 ²⁻
14	d)	near the hydrogen chloride bottle	14	d)	Both assertion and reason are true but reason is not the correct explanation of assertion
15	d)	tautomers	15	d)	near the hydrogen chloride bottle

SHANMUGAM S, ST. JOHN'S MAT.HR.SEC.SCHOOL PORUR, CHENNAI – 600116

Part – II

Ansv	ver any SIX Questions and Questions No.24 is Compulsory.	6 X 2 =	12
16	Gram equivalent mass is defined as the mass of an element (compound or ion) that combines or displaces 1.008 g hydrogen or 8 g oxygen or 35.5 g chlorine. Correct definition		2
17	n = 2 represents L shell, $2n^2$ Maximum number of electron in L shell is $2 \times 2^2 = 8$ electrons	1 1	2
18	Types of Covalent (Molecular) hydrides		
	i) electron precise (CH4, C2H6, SiH4, GeH4),	1 ½	2
	ii) electron deficient (B ₂ H ₆)	1/2	2
	iii) electron-rich hydrides (NH ₃ , H ₂ O).	72	
19	The spontaneity of any process depends on three different factors.		
	i) If the enthalpy change of a process is negative, then the process is exothermic (ΔH is negative)	1⁄2	
	ii) If the entropy change of a process is positive, (ΔS is positive)	1⁄2	
	iii) The Gibbs free energy which is the combination of the above two		2
	$(\Delta H - T\Delta S)$ should be negative for a reaction to occur spontaneously	1	
	ΔH -TΔS < 0 (OR)		
	i) $\Delta H < 0$ ii) $\Delta S > 0$ iii) $\Delta G < 0$		
20	Sign convention of heat		
	i) If heat flows into the system from the surrounding, energy of a system	1	
	increases. Hence it is taken to be positive (+q).		2
	ii) If heat flows out of the system into the surrounding, energy of the	1	-
	system decreases. Hence, it is taken to be negative (-q).		
21	$4NO + 6H_2O \rightleftharpoons 4NH_3 + 5O_2$ (Correct balanced equation)	2	2
	(unbalanced equation 1M)	2	2
22	Isotonic solutions		
	Two solutions having same osmotic pressure at a given temperature are	2	2
	called isotonic solutions.	2	2
00	(Correct definition)		
23	Conversion of ethyl chloride into ethane: $CH_{3}CH_{2}Cl + H_{2} \xrightarrow{Ni(or)Pd} CH_{3}-CH_{3}+HCl$ Ethane	2	2
	Explanation only 1 M		

24	Compulsory questions:		
	i) C ₆ H ₅ Cl + 2NH ₃ $\xrightarrow{250^{0}C}$ C ₆ H ₅ NH ₂ +NH ₄ Cl Aniline	1	2
	$C_6H_5Cl+2Na+Cl-C_6H_5 \xrightarrow{Ether} C_6H_5 \xrightarrow{-} C_6H_5 +2NaCl$ ii) Chlorobenzene Biphenyl	1	
		0110	

SHANMUGAM S, ST. JOHN'S MAT.HR.SEC.SCHOOL PORUR, CHENNAI – 600116

Part – III

Answer any SIX Questions and Questions No.33 is Compulsory.6 X 3 = 18

25	i) \underline{CO}_2 ii) $H_2\underline{SO}_4$	11/2	
	$\begin{array}{l} x+2 \ (-2) = 0 \\ x = 4 \end{array} \qquad \begin{array}{l} 2 \ (+1) + x + 4 \ (-2) = 0 \\ 2 + x - 8 = 0 \end{array} \qquad \begin{array}{l} x = + 6 \end{array}$	11/2	3
		1/2	
26	i) It is defined as the amount of energy released (required in the case noble	2	
	gases) when an electron is added to the valence shell of an isolated neutral	2	
	gaseous atom in its ground state to form its anion.		3
	ii) It is expressed in kJ mol ⁻¹ $A + e \rightarrow A^{-} + EA$	1	
27	John Dalton stated that		
	" the total pressure of a mixture of non-reacting gases is the sum of	0	
	partial pressures of the gases present in the mixture".	3	3
	Correct statement		
28	$\frac{\Delta P}{P_{A}^{\circ}} = \frac{w_{B} \times M_{A}}{w_{A} \times M_{B}}$	0	
	$\overline{P_A^{\circ}} - \overline{w_A \times M_B}$	2	
	The molar mass of the solute (M_B) can be calculated using the known values		3
	of w_A , w_B , M_A and the measured relative lowering of vapour pressure.	1	
29	Electronic configuration of hydrogen atom is 1s ¹	1/2	
	Valence shell electronic configuration of fluorine atom : 2s ² 2px ² , 2py ² , 2pz ¹	1⁄2	0
	When half filled 1s orbital of hydrogen linearly overlaps with a half filled 2pz		3
	orbital of fluorine, a σ -covalent bond is formed between hydrogen and	2	
	fluorine. (OR)		
	H F HF Y		
	$1 + 1 \longrightarrow Z$		
	1s $2p_z$ sp overlapping		
30	Optical Isomerism		
	Compounds having same physical and chemical property but differ only		3
	in the rotation of plane of the polarized light are known as optical isomers and		
	the phenomenon is known as optical isomerism		
	Correct statement		
L		1	

31	S.NO	Nucleophiles	Electrophiles		
	1	Nucleophiles are reagents that has high affinity for electro positive centre.	Electrophiles are reagents that are attracted towards negative charge or electron rich centre.	1	
	2	All Lewis bases act as nucleophiles.	All Lewis acids act as electrophiles	1	3
	3	Ex: Neutral Nucleophiles:	Ex: Neutral electrophiles :		
		NH3, H2O, R-OH, R-O-R'	CO_2 , AICI ₃ , BF ₃ , FeCI ₃ :CCI ₂		
		-Ve charged nucleophiles X- (Cl ⁻ , Br ⁻ , I ⁻) RCOO ⁻ , RO ⁻ , OH ⁻ , CN ⁻ (any one example)	+Ve charged Electrophiles: H ⁺ , X ⁺ , O ⁺ , N ⁺ (any one example)	1	
32	Alkenes	s react with Baeyer's reagent to fo	orm vicinal diols. The purple solution		
	(Mn ⁷⁺) k	pecomes dark green (Mn ⁶⁺), and	then produces a dark brown		
	precipitate (Mn ⁴⁺) (OR)				
		$CH_2 = CH_2 + H_2O $ [O] Cold dil. KMnC 273 K	$\begin{array}{c c} CH_2 \text{-} CH_2 \\ & \\ P_4 \text{ OH OH} \\ \text{ethane-1,2-diol} \end{array} + MnO_2 \downarrow \\ \text{dark brown} \end{array}$		3
33	Compu	Ilsory questions:			
	$N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)}$				
	$K_{\rm C} = \frac{[\rm NH_3]^2}{[\rm N_2][\rm H_2]^3}$				
		$=\frac{1.8\times10^{-2}\times1.8\times10^{-1}}{1.2\times10^{-2}\times3\times10^{-2}\times3\times10^{-2}}$	$\frac{2}{\times 3 \times 10^{-2}} = 1 \times 10^3 L^2 \text{ mol}^{-2}$	1	
					L

Part – IV

Answer all the Questions

5 x 5 = 25

34	a) i) n = 4	l = 0	, 1, 2, 3 four sub-shells \Rightarrow s, p	, d, f		
		l = 0	mı = 0 ;	one 4s orbital.	1⁄2	
		l = 1	$m_{I} = -1, 0, +1;$	three 4p orbitals.	1⁄2	2
		l = 2	$m_1 = -2, -1, 0, +1, +2;$	five 4d orbitals.	1⁄2	
		l = 3	$m_1 = -3, -2, -1, 0, +1, +2, +3;$	seven 4f orbitals	1⁄2	
			Over all (16)Sixteen o	rbital		

35	a) i) Reason for the anomalous behaviour	of beryllium	1	
	1) Its small size and high polarising power			
	2) Relatively high electronegativity and ionisa	ition enthalpy as compared to other	1	
	members			
	3) Absence of vacant d-orbitals in its valence		1	
	ii) Comparison of Properties of Beryllium	with other elements of the group		
	Beryllium	Other elements of the family		
	Forms covalent compounds	form ionic compounds		5
	High melting and boiling point	Low melting and boiling point		
	Does not react with water even at elevated	React with water	2	
	temperature			
	Does not combine directly with hydrogen	Combine directly with hydrogen		
	Does not combine directly with halogens.	Combine directly with halogens		
	Halides are covalent	Halides are electrovalent.		
	(Correct two points)	<u> </u>		
	(OR)			
	b) Characteristics of internal energy (U):			
	i) The internal energy of a system is an ex	tensive property. It depends on	1	
	the amount of the substances present in the	system. If the amount is doubled,		
	the internal energy is also doubled.			
	ii) The internal energy of a system is a stat	te function. It depends only upon	1	
	the state variables (T, P, V, n) of the system.	The change in internal energy		5
	does not depend on the path by which the fin	al state is reached.		0
	iii) The change in internal energy of a syst	em is expressed as $\Delta U = U_f - U_i$	1/2	
	iv) In a cyclic process, there is no internal e	nergy change. ΔU(<i>cyclic</i>) = 0	1/2	
	v) $\Delta U = U_f - U_i = -ve (U_f < U_i)$		1	
	vi) $\Delta U=Uf-Ui=+$ ve $(U_f>U_i)$		1	
36	a) Determination of molar mass of solute f If the solution is prepared by dissolving w_B g then the molality is,			
	Number of moles of solute × 1000			
	weight of solvent in gra	ms(1)	1	
	Number of moles of solute = $\frac{W_1}{M}$	B(2)	1	
	Where, M_B = molar mass of the solute Theref	fore,		

$\Delta T_{b} = \frac{K_{b} \times w_{a} \times 1000}{M_{a} \times w_{a}} \qquad(4)$ Molar mass can be calculated by using (4) $M_{a} = \frac{K_{b} \times w_{b} \times 1000}{\Delta T_{b} \times w_{a}} \qquad(5)$ 1 (OR) b) 1) Bond length The distance between the nuclei of the two covalently bonded atoms is called bond length. i) Bond angle Covalent bonds are directional in nature and are oriented in specific directions in space. This directional nature creates a fixed angle between two covalent bonds in a molecule and this angle is termed as bond angle. iii) Bond enthalpy The bond enthalpy is defined as the minimum amount of energy required to break one mole of a particular bond in molecules in their gaseous state. The unit of bond enthalpy is kJ mol ⁻¹ . 37 a) The extent of ionic character in a covalent bond can be related to the electron negativity difference ($\chi_{A} - \chi_{B}$), is i) equal to 1.7, then the bond A-B has 50% ionic character. ii) if it is greater than 1.7, then the bond A-B has more than 50% ionic character. iii) 2-bromo-3-methylbutane iii) 2-bromo-3-methylbutane iii) 2-hydroxybutanal iv) buta-1,3-diene v) 4-chloropent-2-yne a. $\Delta T_{b} = \frac{K_{b} \times w_{b}}{K_{b}} = \frac{K_{b} \times W_{b}}{K_{b}} = \frac{1}{K_{b}} = $		$m = \frac{w_{B} \times 1000}{M_{B} \times w_{A}} \qquad(3)$	1	
$M_n = \frac{K_n \times w_n \times 1000}{\Delta T_b \times w_n}$ 1 (OR) 1 b) i) Bond length (OR) The distance between the nuclei of the two covalently bonded atoms is called bond length. 1 ii) Bond angle 2 Covalent bonds are directional in nature and are oriented in specific directions in space. This directional nature creates a fixed angle between two covalent bonds in a molecule and this angle is termed as bond angle. 2 iii) Bond enthalpy 5 The bond enthalpy is defined as the minimum amount of energy required to break one mole of a particular bond in molecules in their gaseous state. The unit of bond enthalpy is kJ mol ⁻¹ . 2 37 a) The extent of ionic character in a covalent bond can be related to the electron egativity difference ($\chi_A - \chi_B$), is 2 i) equal to 1.7, then the bond A-B has 50% ionic character 1 5 ii) if it is greater than 1.7, then the bond A-B has more than 50% ionic character, in iii) if it is lesser than 1.7, then the bond A-B has less than 50% ionic character, in iii) if it is lesser than 1.7, then the bond A-B has less than 50% ionic character, in iii) if it is lesser than 1.7, then the bond A-B has less than 50% ionic character, in ii) if it is lesser than 1.7, then the bond A-B has less than 50% ionic character, in iii) if it is lesser than 1.7, then the bond A-B has less than 50% ionic character, in ii) if it is lesser than 1.7, then the bond A-B has less than 50% ionic character, in iii) if it is lesser than 1.7, then the bond A-B has less than 50% ionic charac		$\Delta T_{\rm b} = \frac{K_{\rm b} \times W_{\rm B} \times 1000}{M_{\rm B} \times W_{\rm A}} \qquad \dots \qquad (4)$	1	
(OR)(OR)b) i) Bond length The distance between the nuclei of the two covalently bonded atoms is called bond length.1ii) Bond angle Covalent bonds are directional in nature and are oriented in specific directions in space. This directional nature creates a fixed angle between two covalent bonds in a molecule and this angle is termed as bond angle.2iii) Bond enthalpy The bond enthalpy is defined as the minimum amount of energy required to break one mole of a particular bond in molecules in their gaseous state. The unit of bond enthalpy is kJ mol ⁻¹ .237a) The extent of ionic character in a covalent bond can be related to the electro negativity difference ($\chi A - \chi_B$), is i) equal to 1.7, then the bond A-B has bow ionic character ii) if it is lesser than 1.7, then the bond A-B has more than 50% ionic character.2511iii) j 2-bromo-3-methylbutane iii) 2-hydroxybutanal iii) 2-hydroxybutanal iii) 2-hydroxybutanal1		Molar mass can be calculated by using (4)		
b) i) Bond length1The distance between the nuclei of the two covalently bonded atoms is called bond length.1ii) Bond angleCovalent bonds are directional in nature and are oriented in specific directions in space. This directional nature creates a fixed angle between two covalent bonds in a molecule and this angle is termed as bond angle.2iii) Bond enthalpyThe bond enthalpy is defined as the minimum amount of energy required to break one mole of a particular bond in molecules in their gaseous state. The unit of bond enthalpy is kJ mol ⁻¹ .237a) The extent of ionic character in a covalent bond can be related to the electron negativity difference ($\chi_A - \chi_B$), is i) equal to 1.7, then the bond A-B has 50% ionic character.1ii) if it is lesser than 1.7, then the bond A-B has less than 50% ionic character.1iii) if it is lesser than 1.7, then the bond A-B has less than 50% ionic character.1iii) if hetoxymethane iii) 2-bromo-3-methylbutane iii) 2-hydroxybutanal iii) 2-hydroxybutanal iii) 2-hydroxybutanal iii) 2-hydroxybutanal iii) 2-hydroxybutanal iii) 2-hydroxybutanal1iv) buta-1,3-diene15		$M_{\rm B} = \frac{K_{\rm b} \times w_{\rm B} \times 1000}{\Delta T_{\rm b} \times w_{\rm A}} \qquad \qquad$	1	
b) i) Bond length1The distance between the nuclei of the two covalently bonded atoms is called bond length.1ii) Bond angleCovalent bonds are directional in nature and are oriented in specific directions in space. This directional nature creates a fixed angle between two covalent bonds in a molecule and this angle is termed as bond angle.2iii) Bond enthalpyThe bond enthalpy is defined as the minimum amount of energy required to break one mole of a particular bond in molecules in their gaseous state. The unit of bond enthalpy is kJ mol ⁻¹ .237a) The extent of ionic character in a covalent bond can be related to the electron negativity difference ($\chi_A - \chi_B$), is i) equal to 1.7, then the bond A-B has 50% ionic character.1ii) if it is lesser than 1.7, then the bond A-B has less than 50% ionic character.1iii) if it is lesser than 1.7, then the bond A-B has less than 50% ionic character.1iii) if hetoxymethane iii) 2-bromo-3-methylbutane iii) 2-hydroxybutanal iii) 2-hydroxybutanal iii) 2-hydroxybutanal iii) 2-hydroxybutanal iii) 2-hydroxybutanal iii) 2-hydroxybutanal1iv) buta-1,3-diene15		(OB)		
bond length.iii) Bond angleCovalent bonds are directional in nature and are oriented in specific directions in space. This directional nature creates a fixed angle between two covalent bonds in a molecule and this angle is termed as bond angle.2iii) Bond enthalpyThe bond enthalpy is defined as the minimum amount of energy required to break one mole of a particular bond in molecules in their gaseous state. The unit of bond enthalpy is kJ mol ⁻¹ .237a) The extent of ionic character in a covalent bond can be related to the electron negativity difference to the bonded atoms. In a typical polar molecule, $A^{\delta-}B^{\delta+}$, the electronegativity difference ($\chi_A - \chi_B$), is i) equal to 1.7, then the bond A-B has 50% ionic character.2iii) if it is greater than 1.7, then the bond A-B has more than 50% ionic character. iii) if it is lesser than 1.7, then the bond A-B has less than 50% ionic character.1iii) 2-bromo-3-methylbutane iii) methoxymethane11iii) 2-hydroxybutanal iii) 2-hydroxybutanal15				
Covalent bonds are directional in nature and are oriented in specific directions in space. This directional nature creates a fixed angle between two covalent bonds in a molecule and this angle is termed as bond angle.25iii) Bond enthalpy The bond enthalpy is defined as the minimum amount of energy required to break one mole of a particular bond in molecules in their gaseous state. The unit of bond enthalpy is kJ mol ⁻¹ .237a) The extent of ionic character in a covalent bond can be related to the electron negativity difference to the bonded atoms. In a typical polar molecule, A ⁵ — B ⁵⁺ , the electronegativity difference (XA - XB) can be used to predict the percentage of ionic character as follows.2ii) equal to 1.7, then the bond A-B has 50% ionic character ii) if it is lesser than 1.7, then the bond A-B has less than 50% ionic character.1iii) if it is lesser than 1.7, then the bond A-B has less than 50% ionic character.1iii) wethoxymethane iii) 2-bromo-3-methylbutane1iii) 02-bromo-3-methylbutane1iii) 02-bromo-3-methylbutane1iii) 14-1,3-diene1			1	
in space. This directional nature creates a fixed angle between two covalent bonds in a molecule and this angle is termed as bond angle.25iii) Bond enthalpy The bond enthalpy is defined as the minimum amount of energy required to break one mole of a particular bond in molecules in their gaseous state. The unit of bond enthalpy is kJ mol ⁻¹ .2237a) The extent of ionic character in a covalent bond can be related to the electron negativity difference to the bonded atoms. In a typical polar molecule, A ⁶ - B ⁶⁺ , the electronegativity difference ($\chi_A - \chi_B$), is i) equal to 1.7, then the bond A-B has 50% ionic character ii) if it is lesser than 1.7, then the bond A-B has more than 50% ionic character.2iii) if it is lesser than 1.7, then the bond A-B has less than 50% ionic character. iii) if it is lesser than 1.7, then the bond A-B has less than 50% ionic character. iii) if it is lesser than 1.7, then the bond A-B has less than 50% ionic character. iii) methoxymethane1iii) methoxymethane iii) 2-hydroxybutanal iii) 2-hydroxybutanal11iv) buta-1,3-diene11		ii) Bond angle		
bonds in a molecule and this angle is termed as bond angle. iii) Bond enthalpy The bond enthalpy is defined as the minimum amount of energy required to break one mole of a particular bond in molecules in their gaseous state. The unit of bond enthalpy is kJ mol ⁻¹ . 2 37 a) The extent of ionic character in a covalent bond can be related to the electron negativity difference to the bonded atoms. In a typical polar molecule, $A^{5}B^{5+}$, the electronegativity difference ($\chi A - \chi B$) can be used to predict the percentage of ionic character as follows. If the electronegativity difference ($\chi A - \chi B$), is i) equal to 1.7, then the bond A-B has 50% ionic character ii) if it is greater than 1.7, then the bond A-B has more than 50% ionic character. iii) if it is lesser than 1.7, then the bond A-B has less than 50% ionic character. ii) or 2-bromo-3-methylbutane ii) methoxymethane iii) 2-hydroxybutanal iv) buta-1,3-diene 1 5 7 7 7 7 7 7 7 7 7 7 7 7 7		Covalent bonds are directional in nature and are oriented in specific directions		
bonds in a molecule and this angle is termed as bond angle.5iii) Bond enthalpyThe bond enthalpy is defined as the minimum amount of energy required to break one mole of a particular bond in molecules in their gaseous state. The unit of bond enthalpy is kJ mol ⁻¹ .237a) The extent of ionic character in a covalent bond can be related to the electro negativity difference to the bonded atoms. In a typical polar molecule, $A^{5}B^{5+}$, the electronegativity difference ($\chi A - \chi B$), is i) equal to 1.7, then the bond A-B has 50% ionic character ii) if it is greater than 1.7, then the bond A-B has more than 50% ionic character.1iii) if it is lesser than 1.7, then the bond A-B has less than 50% ionic character. iii) if it is lesser than 1.7, then the bond A-B has less than 50% ionic character. iii) if it is lesser than 1.7, then the bond A-B has less than 50% ionic character.1iii) if it is lesser than 1.7, then the bond A-B has less than 50% ionic character. iii) methoxymethane11iii) 2-hydroxybutanal iii) 2-hydroxybutanal11iii) 2-hydroxybutanal11iii) 2-hydroxybutanal11iv) buta-1,3-diene11		in space. This directional nature creates a fixed angle between two covalent	2	
III) Bond enthalpy The bond enthalpy is defined as the minimum amount of energy required to break one mole of a particular bond in molecules in their gaseous state. The unit of bond enthalpy is kJ mol ⁻¹ .237a) The extent of ionic character in a covalent bond can be related to the electro negativity difference to the bonded atoms. In a typical polar molecule, $A^{\delta}B^{\delta+}$, the electronegativity difference ($\chi_A - \chi_B$) can be used to predict the percentage of ionic character as follows.2If the electronegativity difference ($\chi_A - \chi_B$), is i) equal to 1.7, then the bond A-B has 50% ionic character1iii) if it is greater than 1.7, then the bond A-B has less than 50% ionic character.1iii) if it is lesser than 1.7, then the bond A-B has less than 50% ionic character.1iii) if it is lesser than 1.7, then the bond A-B has less than 50% ionic character.1iii) 2-bromo-3-methylbutane1iii) 2-hydroxybutanal1iii) 2-hydroxybutanal1iv) buta-1,3-diene1		bonds in a molecule and this angle is termed as bond angle.	2	
break one mole of a particular bond in molecules in their gaseous state. The unit of bond enthalpy is kJ mol ⁻¹ . 37 a) The extent of ionic character in a covalent bond can be related to the electro negativity difference to the bonded atoms. In a typical polar molecule, $A^{\delta-}B^{\delta+}$, the electronegativity difference ($\chi_A - \chi_B$) can be used to predict the percentage of ionic character as follows. If the electronegativity difference ($\chi_A - \chi_B$), is i) equal to 1.7, then the bond A-B has 50% ionic character ii) if it is greater than 1.7, then the bond A-B has more than 50% ionic character, iii) if it is lesser than 1.7, then the bond A-B has less than 50% ionic character. (OR) (OR) (DR)		iii) Bond enthalpy		5
unit of bond enthalpy is kJ mol ⁻¹ .237a) The extent of ionic character in a covalent bond can be related to the electro negativity difference to the bonded atoms. In a typical polar molecule, $A^{\delta}B^{\delta+}$, the electronegativity difference ($\chi_A - \chi_B$) can be used to predict the percentage of ionic character as follows.2If the electronegativity difference ($\chi_A - \chi_B$), is i) equal to 1.7, then the bond A-B has 50% ionic character1ii) if it is greater than 1.7, then the bond A-B has less than 50% ionic character, iii) if it is lesser than 1.7, then the bond A-B has less than 50% ionic character.1(OR)1ii) nethoxymethane1ii) 2-bromo-3-methylbutane1iii) 2-hydroxybutanal1iv) buta-1,3-diene1		The bond enthalpy is defined as the minimum amount of energy required to		
37a) The extent of ionic character in a covalent bond can be related to the electron negativity difference to the bonded atoms. In a typical polar molecule, A ^δ -B ^{δ+} , the electronegativity difference (χA - χB) can be used to predict the percentage of ionic character as follows.25If the electronegativity difference (χA - χB), is i) equal to 1.7, then the bond A-B has 50% ionic character ii) if it is greater than 1.7, then the bond A-B has less than 50% ionic character.11iii) if it is lesser than 1.7, then the bond A-B has less than 50% ionic character. iii) if it is lesser than 1.7, then the bond A-B has less than 50% ionic character. ii) methoxymethane11ii) nethoxymethane iii) 2-hydroxybutanal iv) buta-1,3-diene115		break one mole of a particular bond in molecules in their gaseous state. The		
YPercentagePerce		unit of bond enthalpy is kJ mol ⁻¹ .	2	
negativity difference to the bonded atoms. In a typical polar molecule, $A^{o-}B^{o-}$, the electronegativity difference $(\chi_A - \chi_B)$ can be used to predict the percentage of ionic character as follows.5If the electronegativity difference $(\chi_A - \chi_B)$, is i) equal to 1.7, then the bond A-B has 50% ionic character1ii) if it is greater than 1.7, then the bond A-B has more than 50% ionic character.1iii) if it is lesser than 1.7, then the bond A-B has less than 50% ionic character.1iii) in it is lesser than 1.7, then the bond A-B has less than 50% ionic character.1iii) methoxymethane1iii) 2-bromo-3-methylbutane1iii) 2-hydroxybutanal1iii) 2-hydroxybutanal1iv) buta-1,3-diene1	37	a) The extent of ionic character in a covalent bond can be related to the electro		
the electronegativity difference (XA - XB) can be used to predict the percentage of ionic character as follows. 5 If the electronegativity difference (XA - XB), is 1 i) equal to 1.7, then the bond A-B has 50% ionic character 1 ii) if it is greater than 1.7, then the bond A-B has more than 50% ionic character. 1 iii) if it is lesser than 1.7, then the bond A-B has less than 50% ionic character. 1 iii) if it is lesser than 1.7, then the bond A-B has less than 50% ionic character. 1 iii) if it is lesser than 1.7, then the bond A-B has less than 50% ionic character. 1 iii) if it is lesser than 1.7, then the bond A-B has less than 50% ionic character. 1 iii) if it is lesser than 1.7, then the bond A-B has less than 50% ionic character. 1 iii) 2-bromo-3-methylbutane 1 iii) 2-hydroxybutanal 1 iii) 2-hydroxybutanal 1 iv) buta-1,3-diene 1			2	
ionic character as follows.5If the electronegativity difference (XA - XB), is1i) equal to 1.7, then the bond A-B has 50% ionic character1ii) if it is greater than 1.7, then the bond A-B has more than 50% ionic character.1iii) if it is lesser than 1.7, then the bond A-B has less than 50% ionic character.1(OR)1ii) nethoxymethane1iii) 2-hydroxybutanal1iv) buta-1,3-diene1				
If the electronegativity difference ($\chi_A - \chi_B$), is1i) equal to 1.7, then the bond A-B has 50% ionic character1ii) if it is greater than 1.7, then the bond A-B has more than 50% ionic character,1iii) if it is lesser than 1.7, then the bond A-B has less than 50% ionic character.1(OR)1ii) nethoxymethane1iii) 2-hydroxybutanal1iv) buta-1,3-diene1				F
i) equal to 1.7, then the bond A-B has 50% ionic characterii) if it is greater than 1.7, then the bond A-B has more than 50% ionic character.iii) if it is lesser than 1.7, then the bond A-B has less than 50% ionic character.(OR)b) i) 2-bromo-3-methylbutaneii) methoxymethaneiii) 2-hydroxybutanaliv) buta-1,3-diene1		If the electronegativity difference (χ_A - χ_B), is		5
iii) if it is lesser than 1.7, then the bond A-B has less than 50% ionic character.1(OR)1b) i) 2-bromo-3-methylbutane1ii) methoxymethane1iii) 2-hydroxybutanal1iv) buta-1,3-diene1		i) equal to 1.7, then the bond A-B has 50% ionic character	1	
Image: Non-Section (OR)Image: Non-Section (OR)b) i) 2-bromo-3-methylbutane1ii) methoxymethane1iii) 2-hydroxybutanal1iv) buta-1,3-diene15		ii) if it is greater than 1.7, then the bond A-B has more than 50% ionic character,	1	
(OR)Ib) i) 2-bromo-3-methylbutane1ii) methoxymethane1iii) 2-hydroxybutanal1iv) buta-1,3-diene1		iii) if it is lesser than 1.7, then the bond A-B has less than 50% ionic character.	1	
ii) methoxymethane1iii) 2-hydroxybutanal1iv) buta-1,3-diene15		(OR)	1	
iii) 2-hydroxybutanal1iv) buta-1,3-diene15		b) i) 2-bromo-3-methylbutane	1	
iv) buta-1,3-diene		ii) methoxymethane	1	
5		iii) 2-hydroxybutanal	1	
v) 4-chloropent-2-yne		iv) buta-1,3-diene	1	5
		v) 4-chloropent-2-yne	1	

		$CH_2 = CH_2 +$	$HCI \rightarrow CH_3 - CH_2CI$	1	
2. Chloroe	thane re	eacts with ammonia	a to give Ethylamine CH_3 - CH_2NH_2 as (C). It is a		
			is the characteristic test for 1° amine.		
		CH ₃ - CH ₂ Cl +	$+ NH_3 \rightarrow CH_3 - CH_2NH_2 + HCI$	1	
	А	$CH_2 = CH_2$	Ethene (or) Ethylene	1	
	В	CH3 - CH2CI	Chloroethane (or) Ethyl chloride	1	
	С	CH ₃ -CH ₂ NH ₂	Ethylamine(or) Ethanamine	I	

SHANMUGAM S

ST. JOHN'S MAT.HR.SEC.SCHOOL PORUR, CHENNAI – 600116 9841945665