DEPARTMENT OF GOVERNMENT EXAMINATIONS

HIGHER SECONDARY FIRST YEAR EXAMINATION MAY- 2022
KEY ANSWER FOR CHEMISTRY - ENGLISH MEDIUM
Maximum Marks - 70

Answer all the Questions

Part -I
$15 \times 1=15$

Q.NO	Option	A Type	Q.NO	Option	B Type
1	c)	$\mathrm{C}_{8} \mathrm{H}_{18}$	1	a)	$1 p+2 n$
2	b)	$-2^{\circ} \mathrm{C}$	2	c)	(1) - (iv), (2) - (iii), (3) - (i), (4) - (ii)
3	a)	$\begin{aligned} & -\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}>-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}>-\mathrm{CH}_{2} \\ & -\mathrm{CH}_{3}>-\mathrm{CH}_{3} \end{aligned}$	3	b)	NO
4	b)	NO	4	c)	Mass / volume
5	d)	d) Both assertion and reason are true but reason is not the correct explanation of assertion	5	c)	$\mathrm{C}_{8} \mathrm{H}_{18}$
6	c)	Mass / volume	6	a)	Lithium
7	b)	for a system at equilibrium Q is always less than the equilibrium constant	7	a)	$\begin{aligned} & -\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}>-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}>-\mathrm{CH}_{2}- \\ & \mathrm{CH}_{3}>-\mathrm{CH}_{3} \end{aligned}$
8	c)	(1) - (iv), (2) - (iii), (3) - (i), (4) - (ii)	8	c)	Stark effect
9	a)	Lithium	9	b)	for a system at equilibrium Q is always less than the equilibrium constant
10	b)	MgCl_{2}	10	d)	tautomers
11	a)	$1 p+2 n$	11	b)	MaCl_{2}
12	a)	$\mathrm{O}_{2}{ }^{2-}$	12	b)	$-2^{\circ} \mathrm{C}$
13	c)	Stark effect	13	a)	$\mathrm{O}_{2}{ }^{2-}$
14	d)	near the hydrogen chloride bottle	14	d)	Both assertion and reason are true but reason is not the correct explanation of assertion
15	d)	tautomers	15	d)	near the hydrogen chloride bottle

16	Gram equivalent mass is defined as the mass of an element (compound or ion) that combines or displaces 1.008 g hydrogen or 8 g oxygen or 35.5 g chlorine. Correct definition		2
17	$\mathrm{n}=2$ represents L shell, $2 \mathrm{n}^{2}$ Maximum number of electron in L shell is $2 \times 2^{2}=8$ electrons	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2
18	Types of Covalent (Molecular) hydrides i) electron precise $\left(\mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{SiH}_{4}, \mathrm{GeH}_{4}\right)$, ii) electron deficient $\left(\mathrm{B}_{2} \mathrm{H}_{6}\right)$ iii) electron-rich hydrides $\left(\mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{O}\right)$.	$\begin{gathered} 1 \\ 1 / 2 \\ 1 / 2 \end{gathered}$	2
19	The spontaneity of any process depends on three different factors. i) If the enthalpy change of a process is negative, then the process is exothermic ($\Delta \mathrm{H}$ is negative) ii) If the entropy change of a process is positive, ($\Delta \mathrm{S}$ is positive) iii) The Gibbs free energy which is the combination of the above two ($\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$) should be negative for a reaction to occur spontaneously $\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}<0$ (OR) i) $\Delta \mathrm{H}<0$ ii) $\Delta S>0$ iii) $\Delta G<0$	$1 / 2$ $1 / 2$ 1	2
20	Sign convention of heat i) If heat flows into the system from the surrounding, energy of a system increases. Hence it is taken to be positive (+q). ii) If heat flows out of the system into the surrounding, energy of the system decreases. Hence, it is taken to be negative (-q).	1 1	2
21	$4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons 4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \quad$ (Correct balanced equation)...................... (unbalanced equation 1M)	2	2
22	Isotonic solutions Two solutions having same osmotic pressure at a given temperature are called isotonic solutions. (Correct definition)	2	2
23	Conversion of ethyl chloride into ethane: $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}+\mathrm{H}_{2} \xrightarrow[523 \mathrm{~K}]{\stackrel{\mathrm{Ni}(\mathrm{or}) \mathrm{Pd}}{\text { Ethane }}} \underset{\substack{\text { E } \\ 3 \\-\mathrm{CH}_{3}+\mathrm{HCl}}}{\mathrm{CH}^{2}}$ Explanation only \qquad 1 M	2	2

24 Compulsory questions:

i) Chlorobenzene ${ }_{\text {i }}$ Aniline
ii) Chlorobenzene Biphenyl

SHANMUGAM S, ST. JOHN'S MAT.HR.SEC.SCHOOL PORUR, CHENNAI - 600116
Part - III

Answer any SIX Questions and Questions No. 33 is Compulsory.

25	i) CO_{2} ii) $\mathrm{H}_{2} \mathrm{SO}_{4}$ $\begin{aligned} & x+2(-2)=0 \\ & x=4 \end{aligned}$ $\begin{aligned} & 2(+1)+x+4(-2)=0 \\ & 2+x-8=0 \end{aligned}$	$\begin{aligned} & 1 \frac{1}{2} 2 \\ & 11 / 2 \end{aligned}$	3
26	i) It is defined as the amount of energy released (required in the case noble gases) when an electron is added to the valence shell of an isolated neutral gaseous atom in its ground state to form its anion. ii) It is expressed in $\mathrm{kJ} \mathrm{mol}^{-1} \quad \mathbf{A}+\mathrm{e}-\rightarrow \mathrm{A}^{-}+\mathrm{EA}$	2 1	3
27	John Dalton stated that " the total pressure of a mixture of non-reacting gases is the sum of partial pressures of the gases present in the mixture". Correct statement.	3	3
28	$\frac{\Delta \mathrm{P}}{\mathrm{P}_{\mathrm{A}}^{\circ}}=\frac{\mathrm{w}_{\mathrm{B}} \times \mathrm{M}_{\mathrm{A}}}{\mathrm{w}_{\mathrm{A}} \times \mathrm{M}_{\mathrm{B}}}$ The molar mass of the solute $\left(\mathrm{M}_{\mathrm{B}}\right)$ can be calculated using the known values of W_{A}, W_{B}, M_{A} and the measured relative lowering of vapour pressure.	2 1	3
29	Electronic configuration of hydrogen atom is $1 \mathrm{~s}^{1}$ Valence shell electronic configuration of fluorine atom: $2 s^{2} 2 p x^{2}, 2 p y^{2}, 2 p z^{1}$ When half filled 1s orbital of hydrogen linearly overlaps with a half filled $2 p z$ orbital of fluorine, a σ-covalent bond is formed between hydrogen and fluorine. (OR)	$1 / 2$ $1 / 2$ 2	3
30	Optical Isomerism Compounds having same physical and chemical property but differ only in the rotation of plane of the polarized light are known as optical isomers and the phenomenon is known as optical isomerism Correct statement.		3

\begin{tabular}{|c|c|c|c|c|c|}
\hline 31 \& \begin{tabular}{l}
S.NO \\
\hline 1 \\
\hline 2 \\
\hline 3
\end{tabular} \& \begin{tabular}{l}
Nucleophiles \\
Nucleophiles are reagents that has high affinity for electro positive centre. \\
All Lewis bases act as nucleophiles. \\
Ex: Neutral Nucleophiles: \\
\(\mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{O}, \mathrm{R}-\mathrm{OH}, \mathrm{R}-\mathrm{O}-\mathrm{R}^{\prime}\) \\
-Ve charged nucleophiles \\
\(\mathrm{X}-\left(\mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}\right)\) \\
\(\mathrm{RCOO}^{-}, \mathrm{RO}^{-}, \mathrm{OH}^{-}, \mathrm{CN}^{-}\) \\
(any one example)
\end{tabular} \& \begin{tabular}{l}
Electrophiles \\
Electrophiles are reagents that are attracted towards negative charge or electron rich centre. \\
All Lewis acids act as electrophiles \\
Ex: Neutral electrophiles : \\
\(\mathrm{CO}_{2}, \mathrm{AlCl}_{3}, \mathrm{BF}_{3}, \mathrm{FeCl}_{3}: \mathrm{CCl}_{2}\) \\
+Ve charged Electrophiles: \\
\(\mathrm{H}^{+}, \mathrm{X}^{+}, \mathrm{O}^{+}, \mathrm{N}^{+}\) \\
(any one example)
\end{tabular} \& 1
1

1 \& 3

\hline 32 \& | Alkene |
| :--- |
| (Mn^{7+}) |
| precip | \& react with Baeyer's reagent to becomes dark green $\left(\mathrm{Mn}^{6+}\right)$, and ate $\left(\mathrm{Mn}^{4+}\right)$

\[
\mathrm{CH}_{2}=\mathrm{CH}_{2}+\mathrm{H}_{2} \mathrm{O} \frac{[\mathrm{O}]}{\substack{Cold dil. \mathrm{KMnC}
 273 \mathrm{~K}}}

\] \& | rm vicinal diols. The purple solution hen produces a dark brown |
| :--- |
| (OR) $+\mathrm{MnO}_{2} \downarrow$ |
| ethane-1,2-diol dark brown | \& \& 3

\hline 33 \& Com \& Isory questions:

$$
\begin{aligned}
& \mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NH}_{3(\mathrm{~g})} \\
& \mathrm{K}_{\mathrm{C}}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}} \\
& =\frac{1.8 \times 10^{-2} \times 1.8 \times 10}{1.2 \times 10^{-2} \times 3 \times 10^{-2} \times 3 \times 10^{-2}}
\end{aligned}
$$ \& \[

\overline{3 \times 10^{-2}}=1 \times 10^{3} L^{2} \mathrm{~mol}^{-2}
\] \& 1

1
1 \& 3

\hline
\end{tabular}

Part - IV

Answer all the Questions

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
ii) Electronic configuration of \(N\) atom is \(\mathbf{1 s}^{\mathbf{2}} \mathbf{2} \mathbf{s}^{\mathbf{2}} \mathbf{2 p} \mathbf{p}^{\mathbf{3}}\) \\
Electronic configuration of \(\mathrm{N}_{2}\) molecule
\[
\sigma 1 s^{2}<\sigma^{\star} 1 s^{2}<\sigma 2 s^{2}<\sigma^{\star} 2 s^{2}<\pi 2 p y^{2}=\pi 2 p z^{2}<\sigma 2 p x^{2}
\]
\[
\text { Bond order }=\frac{\mathrm{N}_{\mathrm{b}}-\mathrm{N}_{\mathrm{a}}}{2}=\frac{10-4}{2}=3
\] \\
Molecule has no unpaired electrons. Hence, it is diamagnetic
\end{tabular} \& 1

1
1
1 \& 3

\hline \& (OR) \& \&

\hline \& | b) Pauling Method : $\begin{equation*} d=r_{C+}+r_{A-} \tag{1} \end{equation*}$ |
| :--- |
| $\mathrm{rc}_{\mathrm{C}}, \mathrm{r}_{\mathrm{A}}$ - are the radius of the cation and anion respectively. $\begin{align*} & \text { i.e. } \mathrm{r}_{\mathrm{C}^{+}} \alpha \frac{1}{\left(\mathrm{Z}_{\mathrm{eff}}\right)_{\mathrm{C}^{+}}} \quad \begin{array}{l} \text { and } \\ \mathrm{r}_{\mathrm{A}^{-}} \alpha \frac{1}{\left(\mathrm{Z}_{\mathrm{eff}}\right)_{\mathrm{A}^{-}}}- \end{array} \text {(2) } \end{align*}$ |
| Where $Z_{\text {eff }}$ is the effective nuclear charge and $Z_{\text {eff }}=Z-S$ |
| Dividing the equation 2 by 3 $\frac{\mathrm{r}_{\mathrm{C}^{+}}}{\mathrm{r}_{\mathrm{A}^{-}}}=\frac{\left(\mathrm{Z}_{\text {eff }}\right)_{\mathrm{A}^{-}}}{\left(\mathrm{Z}_{\text {eff }}\right)_{\mathrm{C}^{+}}}----(4)$ |
| On solving equation(1) and (4) the values of $\mathrm{r}_{\mathrm{C}+}$ and r_{A} can be calculated | \& 1

1
1
1
1
1 \& 5

\hline \& \& \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline 35 \& \begin{tabular}{l}
a) i) Reason for the anomalous behaviour of beryllium \\
1) Its small size and high polarising power \\
2) Relatively high electronegativity and ionisation enthalpy as compared to other members \\
3) Absence of vacant d-orbitals in its valence shell \\
ii) Comparison of Properties of Beryllium with other elements of the group
\end{tabular} \& 1
1
1

2 \& 5

\hline \& (OR) \& \&

\hline \& | b) Characteristics of internal energy (U): |
| :--- |
| i) The internal energy of a system is an extensive property. It depends on the amount of the substances present in the system. If the amount is doubled, the internal energy is also doubled. |
| ii) The internal energy of a system is a state function. It depends only upon the state variables ($\mathrm{T}, \mathrm{P}, \mathrm{V}, \mathrm{n}$) of the system. The change in internal energy does not depend on the path by which the final state is reached. |
| iii) The change in internal energy of a system is expressed as $\Delta U=U_{f}-U_{i}$ |
| iv) In a cyclic process, there is no internal energy change. ΔU (cyclic) $=0$ |
| v) $\Delta \mathrm{U}=\mathrm{U}_{f}-\mathrm{U}_{i}=-\mathrm{ve}\left(\mathrm{U}_{f}<\mathrm{U}_{i}\right)$ |
| vi) $\Delta \mathrm{U}=\mathrm{U} f-\mathrm{U} i=+\mathrm{ve}\left(\mathrm{U}_{f}>\mathrm{U}_{i}\right)$ | \& 1

1
1

$1 / 2$
$1 / 2$
$1 / 2$
1
1 \& 5

\hline 36 \& | a) Determination of molar mass of solute from elevation of boiling point If the solution is prepared by dissolving $w_{B} g$ of solute in $w_{A} g$ of solvent, then the molality is, $\begin{align*} & \mathrm{m}=\frac{\text { Number of moles of solute } \times 1000}{\text { weight of solvent in grams }} \quad \cdots \cdots \cdots \cdots(1) \\ & \text { Number of moles of solute }=\frac{\mathrm{w}_{B}}{\mathrm{M}_{\mathrm{R}}} \tag{2} \end{align*}$ |
| :--- |
| Where, $\mathrm{M}_{\mathrm{B}}=$ molar mass of the solute Therefore, | \& 1

1 \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
\[
\begin{equation*}
\mathrm{m}=\frac{\mathrm{w}_{\mathrm{B}} \times 1000}{\mathrm{M}_{\mathrm{B}} \times \mathrm{w}_{\mathrm{A}}} \tag{3}
\end{equation*}
\]
\(\qquad\)
\[
\begin{equation*}
\Delta \mathrm{T}_{\mathrm{b}}=\frac{\mathrm{K}_{\mathrm{b}} \times \mathrm{w}_{\mathrm{B}} \times 1000}{\mathrm{M}_{\mathrm{R}} \times \mathrm{w}_{\mathrm{A}}} \tag{4}
\end{equation*}
\]
\(\qquad\) \\
Molar mass can be calculated by using (4)
\[
\begin{equation*}
\mathrm{M}_{\mathrm{B}}=\frac{\mathrm{K}_{\mathrm{b}} \times \mathrm{w}_{\mathrm{B}} \times 1000}{\Delta \mathrm{~T}_{\mathrm{b}} \times \mathrm{w}_{\mathrm{A}}} \tag{5}
\end{equation*}
\]
\(\qquad\)
\end{tabular} \& 1
1
1

1 \&

\hline \& (OR) \& \&

\hline \& | b) i) Bond length |
| :--- |
| The distance between the nuclei of the two covalently bonded atoms is called bond length. |
| ii) Bond angle |
| Covalent bonds are directional in nature and are oriented in specific directions in space. This directional nature creates a fixed angle between two covalent bonds in a molecule and this angle is termed as bond angle. |
| iii) Bond enthalpy |
| The bond enthalpy is defined as the minimum amount of energy required to break one mole of a particular bond in molecules in their gaseous state. The unit of bond enthalpy is $\mathrm{kJ} \mathrm{mol}^{-1}$. | \& 1

2
2

2 \& 5

\hline 37 \& | a) The extent of ionic character in a covalent bond can be related to the electro negativity difference to the bonded atoms. In a typical polar molecule, $A^{\delta-} B^{\delta+}$, the electronegativity difference $\left(X_{A}-X_{B}\right)$ can be used to predict the percentage of ionic character as follows. |
| :--- |
| If the electronegativity difference ($X_{A}-X_{B}$), is |
| i) equal to 1.7 , then the bond $A-B$ has 50% ionic character |
| ii) if it is greater than 1.7 , then the bond $A-B$ has more than 50% ionic character, |
| iii) if it is lesser than 1.7, then the bond $A-B$ has less than 50% ionic character. | \& 2

1
1
1 \& 5

\hline \& (OR) \& \&

\hline \& | b) i) 2-bromo-3-methylbutane |
| :--- |
| ii) methoxymethane |
| iii) 2-hydroxybutanal |
| iv) buta-1,3-diene |
| v) 4-chloropent-2-yne | \& 1

1
1
1
1 \& 5

\hline
\end{tabular}

38 a) i) nitrobenzene

Nitration:

When benzene is heated at 330 K with a nitrating mixture (Con. $\mathrm{HNO}_{3}+$ Con. $\mathrm{H}_{2} \mathrm{SO}_{4}$), nitro benzene is formed by replacing one hydrogen atom by nitronium ion(electrophile) Concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ is added to produce nitronium ion $\mathrm{NO}_{2}{ }^{+}$

ii) benzene sulphonic acid

Sulphonation: Benzene reacts with fuming sulphuric acid (Con $\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{SO}_{3}$) and gives benzene sulphonic acid. The electrophile SO_{3} is a molecule. Although it does not have positive charge, it is a strong electrophile. This is because the octet of electron around the sulphur atom is not reached. The reaction is reversible and desulphonation occurs readily in aqueous medium.

iii) BHC : Benzene reacts with three molecules of Cl_{2} in the presence of sun light or UV light to yield Benzene Hexachloride (BHC) $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{Cl}_{6}$. This is known as gammaxane or Lindane which is a powerful insecticide.
(or)

b) 1. Ethene reacts with HCl to give Chloroethane $\mathrm{CH}_{3}-\mathrm{CH}_{2} \mathrm{Cl}$ as (B) by addition reaction.

$$
\mathrm{CH}_{2}=\mathrm{CH}_{2}+\mathrm{HCl} \rightarrow \mathrm{CH}_{3}-\mathrm{CH}_{2} \mathrm{Cl}
$$

2. Chloroethane reacts with ammonia to give Ethylamine $\mathrm{CH}_{3}-\mathrm{CH}_{2} \mathrm{NH}_{2}$ as (C). It is a primary amine and Carbylamine test is the characteristic test for 1° amine.

$\mathrm{CH}_{3}-\mathrm{CH}_{2} \mathrm{Cl}+\mathrm{NH}_{3} \rightarrow \mathrm{CH}_{3}-\mathrm{CH}_{2} \mathrm{NH}_{2}+\mathrm{HCl}$		
A	$\mathrm{CH}_{2}=\mathrm{CH}_{2}$	Ethene (or) Ethylene
B	$\mathrm{CH}_{3}-\mathrm{CH}_{2} \mathrm{Cl}$	Chloroethane (or) Ethyl chloride
C	$\mathrm{CH}_{3}-\mathrm{CH}_{2} \mathrm{NH}_{2}$	Ethylamine(or) Ethanamine

SHANMUGAM S

ST. JOHN'S MAT.HR.SEC.SCHOOL PORUR, CHENNAI - 600116
9841945665

