DIRECTORATE OF GOVERNEMENT EXAMINATION, CHENNAI-6

HIGHER SECONDARY EXAMINATIONS (SECOND YEAR) MAY 2022

BUSINESS MATHEMATICS AND STATISTICS - ANSWER KEY

General Instructions

1. Answers written only in BLACK or BLUE should be eva uated.
2. For objective type questions, award 1 mark for "writing the correct option's code and the corresponding option's answer".
3. Award " 0 marks" for one who wrote both option's code" and "option's answer" with one of them is not correct.
4. Marks should be awarded for suitable alternative method also.
5. Mark(s) should not be reduced for the correct answer / stage if it is written without formula / properties also, 2^{*} means award one mark for the formula.
6. Award full mark directly, if the solution is arrived with no mistakes without giving weightage for the stages.
7. The stage mark is essential only if the part of the solution is incorrect.
8. Award marks if the answer is in decimal value and also approximately equal to the key answer
9. Important Note for Part II, Part III and Part IV

For a particular stage in which the stage mark is greater than 1 and one who begins with correct step but reaches with incorrect solution, for such suitable credits should be given by breaking the stage marks.
i. Answer all the questions.
ii. Choose the most appropriate from the given Four alternatives and write the option code and the corresponding answer.
$20 \times 1=20$

Q.No	Option	Answer
1	(a)	2
2	(d)	Consistent and has a unique solution
3	(c)	$\frac{1}{2}$
4	(b)	$\mathrm{MC}-\mathrm{MR}=0$
5	(a)	$\frac{-1}{\eta_{d}}$
6	(d)	$\frac{9}{2}$
7	(b)	2 and 6
8	(b)	$x=v y$
9	(a)	$f(x+h)-f(x)$
10	(a)	$f(a)-f(a-h)$
11	(b)	zero
12	(a)	$\frac{1}{15}$
13	(c)	$2.5 e^{-1}$
14	(c)	$\frac{1}{81}$
15	(d)	finite subset
16	(d)	random sample
17	(a)	$\frac{\sigma}{\sqrt{n}}$
18	(a)	Either positive or negative
19	(b)	Fisher Index number
20	(d)	all of the above

x	y	Δy	$\Delta^{2} y$	$\Delta^{3} y$	$\Delta^{4} y$
1	4				
		10			
2	14		12		
		22		6	
3	36		18		0
4		40		6	
4	76		24		
		64			
5	140				
	1 Mark	1 Mark			

PART - III

Answer any Seven questions Question No. 40 is compulsory. $\mathbf{7 \times 3 = 2 1}$

\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{31} \& \begin{tabular}{l}
\[
\left(\begin{array}{ll}
A \& B
\end{array}\right) T=\left(\begin{array}{ll}
A \& B
\end{array}\right)
\] \\
Where \(A+B=1\)
\end{tabular} \& 1 \& \multirow[b]{2}{*}{3} \\
\hline \& \[
\begin{array}{|lll}
\hline \mathrm{A}=75 \% \& \text { (or) } \& \frac{3}{4} \\
\mathrm{~B}=25 \% \& \text { (or) } \frac{1}{4} \\
\hline
\end{array}
\] \& 1 \& \\
\hline 32 \& \[
\begin{aligned}
\& I=\int_{-1}^{1} \frac{(2 x+3) d x}{x^{2}+3 x+7} \\
\& =\left[\log \left(x^{2}+3 x+7\right)\right]_{-1}^{1} \\
\& =\log (11)-\log (5)=\log \left(\frac{11}{5}\right)
\end{aligned}
\] \& 1
1
1 \& 3 \\
\hline 33 \& \& 1

1
1 \& 3

\hline 34 \& $$
\begin{aligned}
& (1-x) d y=(1+y) d x \\
& \int \frac{d y}{1+y}=\int \frac{d x}{1-x} \\
& (1+y)(1-x)=c \quad(\text { Or }) \quad(1+y)(x-1)=c
\end{aligned}
$$ \& 1

1 \& 3

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline 35 \& \[
\begin{aligned}
\& \Delta^{4} y_{0}=0 \quad(\text { or }) \quad(E-1)^{4} y_{0}=0 \\
\& \left(y_{4}-4 y_{3}+6 y_{2}-4 y_{1}+y_{0}\right)=0 \\
\& y_{3}=31
\end{aligned}
\] \& 1
1
1 \& 3 \\
\hline 36 \& \begin{tabular}{l}
I. \(E(a)=a\) where \(a\) is a constant \\
II. \(E(a x)=a E(x)\) \\
III. \(E(a x+b)=a E(x)+b\) where \(a \& b\) are constants \\
IV. If \(x \geq 0\) then \(E(x) \geq 0\) \\
V. \(\quad V(a)=0\) \\
VI. \(V(a x+b)=a^{2} v(x)\) \\
(Any three points)
\end{tabular} \& \& 3 \\
\hline 37 \& \(n\), the number of trials is indefinitely large (ie) \(n \longrightarrow \infty\) p , the constant probability of success in each trial is very small \(p \longrightarrow 0\) \(\mathrm{np}=\lambda\) is finite , where \(\lambda\) is a positive real number \& 1
1
1 \& 3 \\
\hline 38 \& \begin{tabular}{|c|c|}
\hline \(\mathrm{P}=\frac{p_{1}}{p_{0}} \times 100\) \& PV \\
\hline 112 \& 1120 \\
\hline 121.43 \& 607.15 \\
\hline 113.33 \& 679.98 \\
\hline 140 \& 560 \\
\hline 105.88 \& 317.64 \\
\hline \multicolumn{2}{|c|}{\(\sum P V=3284.77\)} \\
Cost of living index number \(=\frac{\Sigma P V}{\Sigma V}=117.31\) \\
\hline
\end{tabular} \& 1

2^{*} \& 3

\hline 39 \& | MINIMUM MAXIMUM
 40 60
 -20 10
 -40 150 |
| :--- |
| $\operatorname{Max}(40,-20,-40)=40 \Rightarrow S_{1}$ |
| Strategy S_{1} is the best. |
| $\operatorname{Min}(60,10,150)=10 \quad S_{2}$ |
| Strategy S_{2} is the best. | \& 1

1
1 \& 3

\hline 40 \& Compulsory:

$$
\begin{aligned}
& E(X)=\frac{3}{2} \\
& \operatorname{Var}(X)=\frac{81}{4}
\end{aligned}
$$ \& 1

1
1 \& 3

\hline
\end{tabular}

41 (a)	$x+y+z=5000,6 x+7 y+8 z=35800,6 x+7 y-8 z=7000$	1	
	$(A, B) \sim\left[\begin{array}{cccr}1 & 1 & 1 & 5000 \\ 6 & 7 & 8 & 35800 \\ 6 & 7 & -8 & 7000\end{array}\right]$	1	
	$\sim\left[\begin{array}{cccc}1 & 1 & 1 & 5000 \\ 0 & 1 & 2 & 5800 \\ 0 & 0 & -16 & -28800\end{array}\right] \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{2}$	1	
	$x=₹ 1000, y=₹ 2200, \quad z=₹ 1800$ (OR)	2	
41 (b)	(i) $k=\frac{1}{10}$	1	
	(ii) $\mathrm{P}(\mathrm{x}<6)=\frac{81}{100}$	1	
	$P(x \geq 6)=\frac{19}{100}$	1	
	$\mathrm{P}(0<x<5)=\frac{8}{10}$	1	
	(iii) The minimum value of $x=4$	1	5
42 (a)	$u^{\prime}=3 x^{2} \quad ; \quad v_{1}=\frac{e^{3 x}}{9}$	1	5
	$u^{\prime \prime}=6 x ; \quad v_{2}=\frac{e^{3 x}}{27}$	1	
	$u^{\prime \prime \prime}=6 \quad ; \quad v_{3}=\frac{e^{3 x}}{81}$	1	
	$\int x^{3} e^{3 x} \mathrm{dx}=x^{3}\left(\frac{e^{3 x}}{3}\right)-3 x^{2}\left(\frac{e^{3 x}}{9}\right)+6 x\left(\frac{e^{3 x}}{27}\right)+c$ (or) $=e^{3 x}\left(\frac{x^{3}}{3}-\frac{x^{2}}{3}+\frac{2 x}{9}-\frac{2}{27}\right)+\mathrm{C}$ (OR)	2*	
42 (b)	$\mathrm{P}(\mathrm{X}=x)=\mathrm{nc}_{x} p^{x} q^{n-x}, \mathrm{x}=0,1,2,3 \ldots \ldots \mathrm{n}$	1	
	$\mathrm{n}=4, \mathrm{p}=\frac{18}{100}$ (or) $0.18, \mathrm{q}=\frac{82}{100}$ (or) 0.82	1	
	(i) $\mathrm{P}(\mathrm{x}=1) \approx 0.3969$	1	
	(ii) $\mathrm{P}(\mathrm{x}=0) \approx 0.4521$	1	
	(iii) $\mathrm{P}(\mathrm{x} \leq 2) \approx 0.9797$	1	
43 (a)	$\begin{aligned} & \eta_{d}=\frac{p+2 p^{2}}{100-p-p^{2}} \\ & \frac{-p}{x}\left(\frac{d x}{d p}\right)=\frac{p+2 p^{2}}{100-p-p^{2}} \end{aligned}$	1	5
	$\int \frac{d x}{x}=\int \frac{2 p+1}{p^{2}+p-100} d p$	1	
	$x=k\left(p^{2}+p-100\right)$	1	
	$\mathrm{k}=-1$	1	
	Demand function $\quad x=100-p-p^{2}$ (OR)	1	

