DIRECTORATE OF GOVERNMENT EXAMINATIONS, CHENNAI- 6 HIGHER SECONDARY SECOND YEAR EXAMINATION - MAY - 2022 PHYSICS KEY ANSWER

NOTE:

- 1. Answers written with Blue or Black ink only to be evaluated.
- 2. Choose the most suitable answer in Part A from the given alternatives and write the option code and their corresponding answer.
- 3. For answers in Part II , Part III , Part IV like reasoning , explanation, narration, description and listing of points, students may write in their own words but without changing the concepts and without skipping any point.
- 4. In numerical problems if formula is not written, marks should be given for the remaining correct steps.
- 5. In graphical representation, physical variables for X-axis and Y-axis should be marked.

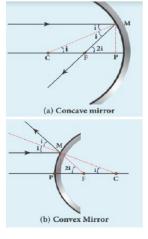
PART - I

TOTAL MARKS: 70

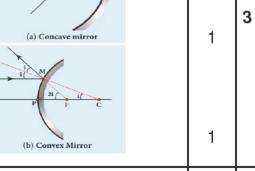
Answer all the questions.

15 X 1 = 15

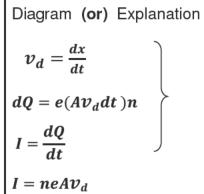
Q.NO	OPTION	TYPE – A	Q.NO	OPTION	ТҮРЕ В
1	b	Peacock feather	1	d	Frequency modulation
2	а	decrease by 4 times	2	а	Thermionic
3	d	Frequency modulation	3	а	decrease by 4 times
4	d	All the above	4	b	γ - rays
5	b	3 X 10 ⁻² C	5	а	12 cm
6	b	γ rays	6	b	3 X 10 ⁻² C
7	а	12 cm	7	b	Peacock feather
8	а	$\frac{R}{4}$	8	b	$\sqrt{\frac{2}{3}}\beta Il$
9	b	$\sqrt{\frac{2}{3}}\beta II$	9	d	All the above
10	а	Thermionic	10	d	0.83
11	d	337.5 C	11	d	$r_n \alpha n$
12	d	Negative	12	С	Polarisation
13	d	0.83	13	d	Negative
14	d	$r_n \alpha n$	14	а	$\frac{R}{4}$
15	С	Polarisation	15	d	337.5 C

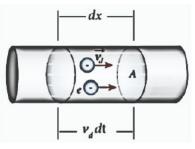

16	Corona Discharge: The total charge of the charged conductor near the sharp edge reduces (or) Leakage of charges from the sharp points of the charged conductor		2
17	The current sensitivity of a galvanometer can be increased by 1. increasing the number of turns (N) 2. increasing the magnetic induction (B) 3. increasing the area of the coil (A) 4 by decreasing the couple per unit twist of the suspension wire (K) (or) $I_s = \frac{\theta}{I} = \frac{NAB}{K} \text{Only formula}$	1/2 1/2 1/2 1/2 1/2	2
18	Work function : The minimum energy needed for an electron to escape from the metal surface Unit : electron volt (eV) (or) J $ (or) \\ h\nu_0 = \ \varphi_0 \ , \ \nu_0 - \ threshold \ frequency $	1½ ½ 1	2
19	R= R ₀ A ^{1/3} R = 1.2 ×10 ⁻¹⁵ × (197) ^{1/3} R= 6.97 ×10 ⁻¹⁵ m or R = 6.97 F	1 ½ ½	2
20	Fleming's right hand rule: Correct Statement		2
21	Doping: The process of adding impurities to the intrinsic semiconductor		2
22	Displacement current: The current which comes into play in the region in which the electric field or the electric flux is changing with time. (or) $i_d = \varepsilon_0 \frac{d\phi_E}{dt} \text{Only formula}$	2	2
23	Electrical resistivity : The resistance offered to current flow by a conductor of unit length having unit area of cross section. (or) $\rho = \frac{RA}{l} \text{(or)} \rho = \frac{R(\pi r^2)}{l} \text{(or)} \rho = R \text{if } l = 1m, A = 1m^2$	2	2
24	$n = \frac{\sin(\frac{A+D}{2})}{\sin(\frac{A}{2})}$ substitution $n=1.532$	1 ½ ½ ½	2

6×2=12


26

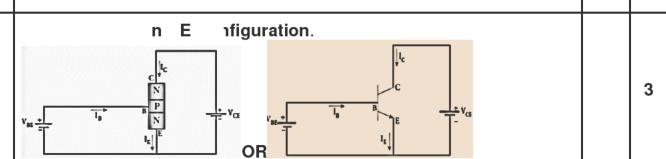
28


PAR	Γ−III w a	ue
25	Any one Diagram	
	$tan i = \frac{PM}{PC}$, $tan 2i = \frac{PM}{PF}$	
	$tan i \approx i$, $tan 2i \approx 2i$	
	$i = \frac{PM}{PC}$, $2i = \frac{PM}{PF}$	
	2PF =PC	J
	$2f = R \text{ or } f = \frac{R}{2}$	



(a) Concave mirror	
(b) Convex Mirror	1
	- 1

۲.



ax		
$\left(\begin{array}{c} \bigcirc \stackrel{\nabla}{V} \\ \circ \bigcirc \rightarrow \end{array}\right) $	1	•
$v_d dt$		3

27	Laws	of photo	electric	e e	ect:						
	i)	For a give	en metall	ic sı	h	ssi	0	е	ro	а	plac
		only if the	frequen	cy of	fincident	light is gr	reater than			n m	imum
		r e		h	reshed f	requency					
	ii)	If $(v > v_0)$	numbe	r p	photoeled	trons em	itted is pro	ро	rtion	al to	
		r e	i d	t ra	adiation						

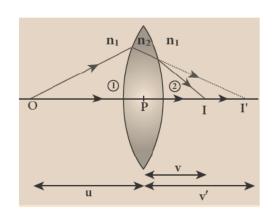
٠,	Tota given metamoet in een een en a i place		1 -
	only if the frequency of incident light is greater than n m imum	1	l
	r e hreshed frequency		l
ii)	If $(v > v_0)$ number photoelectrons emitted is proportional to	1/2	l
	r e i d t radiation		
iii)	Maximum kin rgy of photoelectron is independent of sity of	1/2	
,	the incident radiation		
iv)	M i . toelectrons is proportional to frequency of cident	1/2	
,	,		1

,	radiation	to the question of the properties and the question of the content of the properties and the question of the content of the properties and the prop		
W	There is no time le	atwoon incidence, of light and size ion of	1/2	
V)	There is no time la	etween incidence of light and ejec ion of	/ 2	
	photoelectrons			
				1

29	Any three uses of Polaroid's.	3×1	3	
30	Diagram & Explanation $V = V_1 + V_2 + V_3$ $V = V_1 + V_2 + V_3$	1/2		
	Upto $\frac{Q}{c_s} = Q\left(\frac{1}{c_1} + \frac{1}{c_2} + \frac{1}{c_3}\right)$ V_1 V_2 V_3	1/2	3	
	$\frac{1}{c_s} = \frac{1}{c_1} + \frac{1}{c_2} + \frac{1}{c_3} (or) \qquad \text{uivalent Statement}$	1		
31	(i) Formula $l=rac{nh}{2\pi}$	1/2		
	Substitution $l = 5.25 \times 10^{-34} \text{ kg m}^2 \text{s}^{-1}$	1/2 1/2		
	(ii) Formula $V = \frac{l}{mr}$	1/2		
	Substitution	1/2	3	
	$v = 4.4 \times 10^5 \text{ms}^{-1}$ (or)	1/2		
	e itive method $(ii) V = \frac{1}{137} \frac{c}{n}$ $1 3 \times 10^{8}$	1/2		
	$V = \frac{1}{137} \frac{3 \times 10^8}{5}$			
	$v = 4.4 \times 10^5 \text{ms}^{-1}$	1/2		
32	Any three r of Lorentz force OR	3×1	3	
	$F_m = qvB \sin \theta$ (OR) $\dot{\mathbf{F}}_{\mathbf{m}} = \mathbf{q} \left(\vec{\mathbf{v}} \times \vec{\mathbf{B}} \right)$	1	3	
33	(i) Impedance $Z = \sqrt{R^2 + (T_L - X_c)^2}$ Substitution $Z = \sqrt{30^2 + 84 - 144)^2}$	1/2 1/2		
	$Z = 50 \Omega$	1/2		
	(ii) Phase Angle $tan \phi = \frac{X_L - X_C}{R}$	1/2	3	
	Substitution $\tan \phi = \frac{184 - 14}{30} = 133$	1/2		
	Voltage leads curren by ϕ : $tan^{-1}\left(\frac{4}{3}\right) = tan^{-1}(1.33) = 53.1^{\circ}$	1/2		

34 (a)	Full wave rectifier: Circuit Diagram Current flow during positive half cycle M A	1	
(4)		1	
	Input D ₁		
	Correct Boy dering negative helf cycle Construction	1/2	
	†		5
	Po c p ition	1	
	Negati e ation ↓ M M	1	
	Efficiency 81.2 %	1/2	
	n o e r is	1	
	Transformer:		
34 (b)	Principle: M u ton Primary winding of Secondary winding of	1/2	
	Diagram & Explanation N _p turns Primary Secondary	1	
	Primary Secondary		
	$\varepsilon_P = -N_P \frac{d\phi_B}{dt}$ (or) $v_P = -N_P \frac{d\phi_B}{dt}$	1	
	$arepsilon_S = -N_S rac{d\phi_B}{dt} ext{ (or) } v_S = -N_S rac{d\phi_B}{dt}$	'	5
	For an i I o r, input power = output power $v_P i_P = v_S i_S$	1/2	
	$\frac{\gamma_S}{\gamma_P} = \frac{N}{N_P} = \frac{I_P}{I_S} = K$		
	$\sigma_P = N_P = I_S$	1	
	For step up transformer $\zeta > 1$		
	For step down transformer 7 < 1	1	

35 a t	c a point du	e to an electric dipole:		
	Explanation	ie to an electric dipole.	1	
upto V = 0	$\frac{q}{4\pi\varepsilon_o} \left(\frac{1}{r_1} - \frac{1}{r_2}\right)$	P	1	
Upto $\frac{1}{r_1}$ =	$\frac{1}{r}\left(1+\frac{a\cos\theta}{r}\right)$	r_2	1/2	
$\frac{1}{r_2} = \frac{1}{r} \left(1 \right)$	$-\frac{a\cos\theta}{r}$	A $180-\theta$ \overrightarrow{p} B	1/2	5
upto V = 0	$\frac{1}{4\pi\varepsilon_o}\frac{2aq\cos\theta}{r^2}$	$ \begin{array}{cccc} -q & O & +q \\ & & & & & & \\ & & & & & & \\ & & & & &$	1/2	
p = 2aq			1/2	
$V = \frac{1}{4\pi\varepsilon_o} \frac{1}{4\pi\varepsilon_o}$	$\frac{\cos \theta}{r^2}$ (or) $V = \frac{\vec{p}.\hat{r}}{4\pi\varepsilon_0 r^2}$		1	
35 (b) Diagram 8	u x :riment: Explanation	S ₁ d _C 0 V	1	
up to δ :	$=\frac{dy}{D}$	¥s ₂ b	1	
n	g e or maxima $y = 0, 1, 2, 3$ $y = n \frac{\lambda D}{d}$ (or	,	1/2	
n	r r r m nima δ $\mathbf{n} = 1, 2, 3,$	I		5
	$y = \frac{(2n-1)}{2} \frac{\lambda D}{l} \qquad (or)$	$y_n = \frac{(2n-1)\lambda D}{2} \frac{\lambda D}{d}$	1/2	
Definition	of bandwidth	J		
Equation	or bandwidth ight fringe	or dark fringe	1/2	
$\beta = \frac{\lambda}{\beta}$)		1/2	
l d			1	


36	⊪g straight conductor g nt :		
(a)	Diagram & Explanation	1	
	$d\vec{B} = \frac{\mu_o}{4\pi} \frac{I dl \sin \theta}{r^2} \hat{n}$	1/2	
	$upto \ d\vec{B} = \frac{\mu_o I d\phi}{4\pi r} \ \hat{n}$	1	
	$d\vec{B} = \frac{\mu_o I}{4\pi a} ; \phi d\phi \hat{n} $	1/2	5
	$\mathrm{upto}\overrightarrow{B} = \frac{\mu_0 I}{4\pi a} \left(\sin \phi_1 + \sin \phi_2 \right) \widehat{n}$	1/2	
	$\phi_1 = \phi_2 = 90^{\circ} \text{ or } \frac{\pi}{2}$	1/2	
	$\vec{B} = \frac{\mu_o I}{2\pi a} n$	1	
36 b	Spectral gen atom:	- 4	
	p t vith explanations and formula (or)	5×1	5
	Names of sp t alone	2	
37 a(i)	Characteristic x- tra:	1	
α(ι)	x – • narrow peaks at some well – defined wavelengths when the tarç y f c trum	'	
	o p illed characteristic x – ray spectrum.		
	Explanation with Diagram	2	
0.7	13400		
37 a(ii)	$\lambda_{\circ} = \frac{12400}{V} A^{\circ} $		5
-()	$\lambda_{\circ} = 0.62 \mathrm{A}^{\circ}$	1	
	$v_0 = \frac{c}{\lambda_o}$		
	$v_0 = 4.84 \times 10^{18} \text{Hz}$	1	
37	Spectrum:	1/	
(b)	The definite patte n of colc ban r f sion is called as spectrum.	1/2	
	Emission Spectrum :		
	n u pectra (ii) Line Emission Spectra	1½ 1½	5
	n a	11/2	5
	on and examples		
	(or) ne types of Emission spectrum alone	11/2	

38 a Len's makers formula:

Diagram & Explanation

$$\frac{n_2}{v} - \frac{n_1}{u} = \frac{(n_2 - n_1)}{R}$$

$$\frac{n_2}{v'} - \frac{n_1}{u} = \frac{(n_2 - n_1)}{R_1}$$

$$\frac{l_1}{v} - \frac{n_2}{v'} = \frac{(n_1 - n_2)}{R_2}$$

$$\frac{1}{v} - \frac{1}{u} = \left(\frac{n_2}{n_1} - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$$

1/2

5

b i a ne image is formed at the

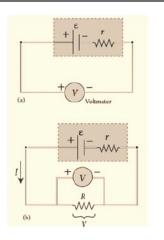
focus of the lens.
$$u = \infty$$
, $v = f$
$$\frac{1}{f} : \left(\frac{n_2}{n_1} - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$$

If the lens is kept n air, $n_1 = 1$ and $n_2 = n$.

$$\frac{1}{f} = (n-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)$$

ell using voltmeter:

1


38 (b) Both the diagrams

Explanation

$$V = \varepsilon - Ir$$
 (or) $Ir = \varepsilon - r$

$$\frac{Ir}{IR} = \frac{\varepsilon - V}{V}$$

Internal resistance $r = \left. \frac{\varepsilon - V}{V} \right] R$

1/2

1

1

1/2

1

5