SSC GRADUATE LEVEL TIER-I EXAM

HELD ON : 08.07.2012 (NORTH ZONE : MORNING SHIFT-2)

(ALSO USEFUL FOR SSC FCI ASSISTANT GRADE-III EXAM)

-		A CONTRACTOR OF		(a) DITU	100.000	0.00	nona maio	DOLLAR O
GENERAL INTELLIGENCE AND REASONING				(1) EFH (3) BCE (1) DH	(2) OPQ (4) IJL (2) FJ	23.	(1) ZADE (3) STUX	, RSVW, <u>?</u> (2) HIKL (4) MNPQ
Directions (1-9): In the follow- ing questions, select the related let- ters/word/number from the given al- ternatives.				(3) HK (1) 24 (3) 80 (1) 121	(4) PR (2) 49 (4) 15 (2) 324		CIM, HNR, M (1) SXA (3) RXB	(2) UYB (4) ZEH
				(3) 523	(4) 729	20.		
	Length : Metre (1) Calories (3) Watt	(2) Degree (4) Kilogram	18.	(1) 704, 11 (3) 832, 13	(2) 256, 4 (4) 310, 5	26.	(1) 16 (3) 31 3120, ?]	(2) 30 (4) 32 122 - 23 - 4
	Square : Cube (1) Ellipse		19.	their ascendin	llowing words in a g order, as in a	20.	(1) 488 (3) 610	(2) 621 (4) 732
	(3) Cone	(4) Sphere		dictionary : 1. Pick	2. Pith	27.	0, 5, 60, 615,	
	Paper : Tree : :	Glass: ?		3. Pile	 Pith Perk 		(1) 6030	(2) 6170
	(1) Window	(2) Sand		5. Pour	A. LOIN		(3) 6130	
	(3) Stone	(4) Mirror		(1) 4, 1, 2, 3, 5				
				(2) 4, 1, 3, 2, 5				
	(1) VUSQ	(2) VRPM		(3) 4, 3, 2, 1, 5				ajan is Mogan's
	(3) UTRP	(4) VTRM		(4) 5, 4, 3, 2, 1			to Selvan ?	is Nithya related
	ACEG : DFHJ (1) TVXZ		20.		llowing words in		(1) Daughter	(2) Sister
	(1) TVAZ (3) MNPR	(2) TQST (4) EGIJ		their ascending	g order :		(3) Cousin	(4) Wife
c	EGIK : FILO ::			1. Millenium 2. Diamond J		29.	A hoy's age is	one fourth of his
	(1) JGMP	(2) JGPM		3. Silver Jubi			father's age. T	he sum of the boy's
	(3) GJPM	(4) GJMP		4. Centenary				
	10:91::9:?			5. Golden Jub	ilee			
	(1) 69	(2) 72			(2) 2, 5, 3, 1, 4		8 years ?	
	(3) 89	(4) 97		(3) 3, 5, 2, 4, 1	(4) 2, 3, 5, 1, 4		(1) 15	
			21.		llowing words in	30.	(3) 35	(4) 36 a lady "Your moth-
				their descendir		30.		sister is my aunt".
			1	1. Weekly	2. Bi-annual		How is the lar	ly related to man?
				 Fortnightly Annual 	4. Monthly		(1) Sister	(2) Mother
		(2) 250			(2) 2, 5, 4, 1, 3		(3) Daughter	
	(3) 200	(4) 156			(2) 2, 0, 4, 1, 3 (4) 5, 2, 4, 3, 1		(4) Granddau	ghter
	Directions (10-18) : In the fol- lowing questions, find the odd num-				of letters when	31.		t becomes North,
		nd the odd num- pair from the giv-	22.		aced at the gaps			
	lternatives.	an nour the giv-			tter series shall			
	(1) Pathology	(2) Geology		complete it ?			(1) North	
	(3) Cardiology						(3) East	(4) North West
	(1) Rivulet	(2) Stream						
	(3) River	(4) Pond		(3) a b c b c	(4) b c a b c -27): In the fol-			ect the word which using the letters
	(1) Konark	(2) Madurai			-27): In the fol- series is given.		not be formed a given word.	using the letters
	(3) Dilwara				ing. Choose the		CONTENTIC	
		(2) QOM	corre	ect alternative fro	om the given ones		(1) TONIC	
			that	will complete th	ne series.		(3) NATION	(4) NOTION
						- marine	(0) NATION	(4) NOTION

	in code language, ritten as 27354 and
	itten as 1687. How vritten in that code?
	(2) 27684

34. WAYIN is written as TXVFK How LBUK can be written in

- 36. If DOCTOR is written as

Directions (37-38) : In the following questions, find the missing

42. A man coming out of the backfor another kilometre. Then he he from his house at the end?

Directions (44-45) : In the folments to be true even if they seem to the given statements.

44. Statements:

- were admitted to hospital.

Conclusions:

- lead to Typhoid.
- II. Typhoid is a contagious dis-

- (1) 60% of the government em-
- (2) Mr. Gopal is a government

Conclusions:

Directions : In question no. 46.

46. **Question Figure**

Question Figure

Answer Figures

Directions : In question no. 48.

48. Question Figure

Answer Figures

45. Statements:

Directions (49) : If a mirror is placed on the line MN, then which of the answer figures is the right image of the given figure ?

49. Question Figure

Answer Figures

Directions (50) : A word is represented by only one set of numbers as given in any one of the alternatives The sets of numbers given in the alternatives are represented by two classes of alphabets as in two matrices given below. The columns and rows of Matrix I are numbered from 0 to 4 and that of Matrix II are numbered from 5 to 9. A letter from these matrices can be represented first by its row and next by its column, e.g., 'R' can be represented by 13, 22, etc. and 'P' can be represented by 67, 76. etc. Similarly, you have to identify the set for the word SHRI.

50. MATRIX I

	0	1	2	3	4
0	R	Н	Е	L	I
1	1	Е	L	R	Н
2	н	L	R	1	Е
3	Е	R	1	Н	L
4	L	I	Н	Е	R

MATRIX II

	5	6	7	8	9
5	В	s	N	Α	D
6		Ν	в		Α
7	Α	в	D	Ν	S.
8	s	D	А	в	N
9	N	Α	s	D	В

(3) 68, 20, 13, 32 (4) 85, 02, 44, 30

GENERAL AWARENESS

- 51. A movement along the demand curve of a commodity occurs due to change in
 - (1) income of the consumers
 - (2) its own price
 - (3) taste of the consumers
 - (4) expectations of the consum-
- 52. GNP calculation through Expenditure Method does not include
 - vestments
 - (2) Net Foreign Investments
 - (3) Depreciation Expenditures
 - (4) Private Consumption Expenditure
- 53. The Cobb-Douglas Production function $Q = AL^{a}k^{(1-a)}$ is based on
 - (2) decreasing returns to scale (4) fluctuating returns to scale
- 54. Find the odd one out of the following

(1) Delhi Transport Corporation (2) Indian Bullways (3) Kingfisher Airlines

- (4) Reliance Industries Limited
- 55. Monetary Policy in India is laid down and executed by
 - (1) Union Government
 - (2) ASSOCHAM
 - (3) Reserve Bank of India
- 56. Which one of the following subjects is not available on the Union List?
 - (1) Census
 - (2) Banking
 - (3) Trade Union
 - (4) Foreign Loans
- 57. The term "closure" in Parliamentary terminology implies (1) the end of session of Parlia-
 - (2) stoppage of debate on a mo-
 - (3) end of a day's proceedings (4) None of the above
- 58. Which of the following is not correctly matched?
 - (1) Article 14 Equality before

- (2) Article 16 Equal opportu-

- dents held office for two consec-
 - (1) Dr S Radhakrishnan
 - (2) Dr. Zakir Hussain
 - (3) Dr. Rajendra Prasad
- 60. Which Amendment Act reduced
- 61. Match the following:

 - b. Saka Era 2. A. D. 320
- 62. Mahavira was the (1) 21st Tirthankara (3) 23rd Tirthankara
- 63. Which one among the following woman scholars challenged the
- 64. Which one of the following event made the crown of England to
 - (1) Battle of Plassey
 - (2) Battle of Buxar
- 65. Who built the famous Dilwara temple at Mount Abu in Rajast-
- 66. GIS stands for
 - (1) Global Institute for Soils
 - (2) Geographical International

			ogra tems			Info	rmat	ior
					rm	ation	Sta	tis-
		tics						
			of the		owi	ngis	a Tra	ins
		mala	yan					
		Gan	ga) Yam	una	
		Sut	lej			Rav		
68.						g usi	ng co	des
			elow					
	Lis					st II		
			Typ			egion		
		opica						
		ergre				Siwa		
		nsoo				Shill		
		mper				West		gal
		ngro				Nilgi		
						the N		
						ated		
	(1)	Kris	hna			God		
			very			Tap		
.70.			anal					
		Per: Sea			HE &	ind A	Arab	ian
			San	and	м	edite	man	
		Sea		anu		eunce	rrau	Pan
			liter	ran	ea	n Se	a a	ind
			k Se					
		Red		and	A	abia	n Se	
	Dru	ug w	hich	help	os t	o red	uce a	nx-
		and	l bri	ngs	ab	out c	almn	ess
			quil					
		diur						
			gesi					
			hist					
			s ab					
			ken			Ostr		
		Duel				Peac		
			d by		a	ntibio	ucs	are
			pton					
			ergil					
			illiu					
		Baci						
				t tha	it n	rotec	t pla	nts
						t of u		
		rays						
						Caro		
		Phys	LOCA PH	min		Plac	tid.	

75.	Glycogen, starc		
	are polymers of		
	(1) Fructose	(2) Glucose	
		(4) Maltose	
76.	Black death is		
	(1) Cancer	(2) Plague	
	(3) AIDS	(4) Gonorrhoea	
77.	Stars appear to	move from eas	
	to west because		
	(1) whole univ		2
	from east to		
	(2) earth is revo		6
	sun		
	(3) earth is rotat	ting from east t	0
	west		
	(4) earth is rota	ating from wes	
	to east	acting in our wes	
78	On the moon, ar	astronaut can	
	not drink lemo		
	help of a straw l		
	(1) acceleration of	due to gravity of	
	the moon is		1
	(2) there is no at		
	moon	mosphere on th	
	(3) lemonade eva	anorates instan	
	taneously on		
	(4) None of the a		
70	A particle movin		
	speed 1s.org	Sr Isten unitorn	
	(1) must have up	niform volosity	
	(2) cannot have a		
	(3) may have un		
	(4) will have no		
en	Device which us		
00.	for detection a		
	called	ind ranging i	
	(1) Radar		
	(2) Sonar		
	(3) Pukar		
	(4) None of the a	ibove	
81.	What is the nam		
	topology in which	ch there are bi	
	directional link:	s between each	
	possible node ?		
		(2) Star	
		(4) Mesh	
82.	LAN stands for		
	(1) Local Area N		
	(2) Large Area N		
	(3) Large Area M		
	(4) Local Area N		
	Dry Ice is nothin		
	(1) Gaseous carb		
	(2) Washing sod		
	(3) Solid carbon		
	(1) Corbon mone	nido	

		tained as slag in a blast furnace
		(1) Calcium Carbonate
		(2) Calcium Sulphate
		(3) Calcium Chloride
		(4) Calcium Silicate
	85.	When H2 gas is allowed to ex
		pand from a region of high pres
		sure to a region of low pressure
		the temperature of the gas
		(3) does not change
		(4) decreases suddenly
	86.	In the industrial production o
		vegetable ghee, the process in
		volved is
		(1) dissociation (2) reduction
		(3) oxidation (4) ionisation
	. 87.	Which of the following weeds ha
		been found useful to check wate
		pollution caused by industria
		affluents ?
		(1) Parthenium
		(2) Elephant grass
		(3) Water hyacinth
		(4) Both (1) and (2) above
		In which year the Chernoby
		Nuclear Power Plant of the
		former USSR had accident tha
		caused escape of radio nuclide
		into atmosphere ?
		(1) 1979 (2) 1980
		(3) 1984 (4) 1986
	89	Certain desert lizards excrete
		their wastes in dry form. This
		serves as a means of
		(1) protective mechanism
		against their predators
		(2) limiting factor of the organ
		ism
		(3) adaptation of the organism
		to the environment
1		(4) countering the problem o
		food scarcity
	00	Which one is regarded as "World
		heritage forest" ?
		(1) Nandan Kanan in Odisha
		(2) Kaziranga in Assam
		(3) Sundarbans in West Bengal
		(4) Indian Botanical Garden
		Shibpur in West Bengal
	91.	Kidney can be taken from a dy
		ing person who has the
		(1) cessation of neurological
		function only

(2) cessation of cardiac function only	11
(3) cessation of respiratory func- tion only	1
(4) cessation of kidney function only	
92. There is no life on moon because	
it has no	
(1) Nitrogen (2) Sulphur	
(3) Oxygen (4) Water	
93. Losoong is a festival celebrated	
(1) Tibet	
(2) Arunachal Pradesh	
(3) Sikkim (4) Kerala	-
94. The commodity for which India	
spends the largest amount to im-	
port is	
(1) Foodgrains	
(2) Crude petroleum	
(3) Fertilisers	
(4) Iron and Steel	
95. In which categories did Marie Curie win her two different No-	
bel Prizes ?	
(1) Physics and Chemistry	
(2) Chemistry and Medicine	
(3) Physics and Medicine	1
(4) Chemistry and Peace	
96. Michael Phelps won gold	
medals in swimming events in	
the Beijing Olympics. (1) 6 (2) 7	
(1) 6 (2) 7 (3) 8 (4) 9	
97. Spot the odd one from the fol-	1
lowing:	
(1) Tarapur (2) Trombay	
(3) Kalpakkam (4) Narora	
98. Which one of the following play-	
ers has the unique distinction of	
winning 50 Doubles Titles in	
ATP tour history ?	
(1) Leander Paes	
(2) Andy Roddick (3) Novak Djokovic	
(4) Roger Federer	
99. As per the 2011 census, the state	
with the largest gap in male and	
female literacy is	
(1) Uttar Pradesh	10
(2) Madhya Pradesh	1
(3) Rajasthan (4) Kerala	
100. Which among the following is	
termed 'Hot Money'? (1) FII (2) FDI	
(3) ADR (4) GDR	
(0) HDR (4) GDR	

QUANTITAT	IVE APTITUDE
101. If $\cot A + \frac{1}{c}$	$\frac{1}{\text{ot A}} = 2$, then
$\cot^2 A + \frac{1}{\cos^2 A}$	$\frac{1}{t^2 A}$ is equal to
(1)4	(2) $\sqrt{2}$
(3) 1	(4) 2
102. If $f(x) = \sin^2 x$	$x + \operatorname{cosec}^2 x$, then the value of $f(x)$ is
(3) 2	(4) 3 velling on a straight
of the tower towards the the angle of of the tower er is found speed of the (1) 135 km/ (3) 120 km/ 104. If θ is a posi tan $\theta + \cot \theta$ sec θ is	f elevation of the top is 30°. After driving tower for 10 seconds, f elevation of the top as seen by the driv- to be 60°. Then the ear is hr. (2) 110 km/hr. hr. (4) 90 km/hr. hr. (4) 90 km/hr.
(1) $\frac{1}{\sqrt{2}}$	(2) $\sqrt{2}$
105. The value of figure is	f x in the following
75°	
(1) 40*	(2) 70°
(3) 50°	(4) 60°
06. The angle of point from thigh tower i	of depression of a the top of a 200 m s 45°. The distance from the tower is

(1) $\frac{200}{\sqrt{3}}$ m (2) 200 m

(3) 200 √3 m (4) None of these

107. If $\sin \theta + \cos \theta = \sqrt{2} \sin (90^\circ - \theta)$, then $\cot \theta$ is equal to

(1) $\sqrt{2} + 1$ (2) $\frac{1}{\sqrt{2} + 2}$

(3) $\sqrt{2} - 1$ (4) None of these **108.** If A and B are positive acute

angles such that $\sin(A - B) = \frac{1}{2}$

and $\cos (A + B) = \frac{1}{2}$, then A and

B are given by (1) A = 45°, B = 15° (2) A = 15°, B = 45° (3) A = 30°, B = 30° (4) None of these

109. If $7 \sin^2 \theta + 3 \cos^2 \theta = 4$, and θ is a positive acute angle, then $\tan \theta$ is equal to

(1) $\frac{1}{3}$ (2) $\frac{1}{7}$

(3)
$$\frac{1}{\sqrt{3}}$$
 (4) $\sqrt{3}$

110. A wheel makes 360 revolutions in a minute. The number of radians through which it turns in one second is

(1) 12π^c
 (2) 11π
 (3) 10π^c
 (4) 8π^c

111. $\frac{\sec^2\theta - \cot^2(90^\circ - \theta)}{\csc^2 67^\circ - \tan^2 23^\circ}$

 $+\sin^2 40^\circ + \sin^2 50^\circ$ is equal to (1) 0 (2) 4

- **112.** If P denotes the perimeter and S denotes the sum of the distances of a point within a triangle from its angular points, then (1) P < S (2) $P \leq S$ (3) S < P (4) $S \leq P$
- 113. Two circles touch each other externally at a point P and a direct common tangent touches the circles at the points Q and R respectively. Then ∠QPR is

 (1) 45°
 (2) 180°
 (3) 90°
 (4) 60°

A b BC meets it at D. The bisec- tor of 2.4BC meets A b at B. (1)60° (2)120° (3)90° (4)75° (3)90° (4)75° (3)91° (4)75° (3)91° (4)75° (3)1° (4) 12° (4) (3)1° (4) 12° (4) (4) an equilateral triangle (3)0.5 (4) 24° (25° (3) no 550° (4) 24° (25° (3) no 550° (4) 24° (25° (4) an equilateral triangle (3)0.5 (4) 24° (25° (3) no 550° (4) 24° (25° (4) an equilateral triangle (3)0.5 (4) 24° (25° (3) no 550° (4) 24° (25° (4) an equilateral triangle (1) 0.03 (2) 0.09 (3)0.5 (4) 0.03 (3) 16° (4) 0.03 (3) 16° (4) 0.03 (3) 16° (4) 0.03 (4) 0.03 (2) 0.09 (1) 17° (5°) (4) an equilateral triangle (1) 180° (4) 00° (3) 0.5 (4) 0.13 (1) 180° (4) 00° (1) 180° (4) 00° (3) 10° (4) 11 (3) 16° (4) 10° (3) 10° (4) 11 (3) 10° (4) 11 (4) 10° (4) 10° (4) 11 (5) 10° (4) 11 (5) 10° (4) 11 (5) 10° (4) 11 (5) 1	$\frac{4}{3}$ st possil :5 :1 ca + ab. 5 1 expressi . ² + 12x - 1
$ \begin{array}{c} (3) 1:1 & (4) 2:1 \\ 13. If a: b = 2:3, b : c = 4:5 \text{ and } \\ c: d = 6:7, \text{then } :d = \\ (1) 12: 35 & (2) 24: 35 \\ (3) 16: 35 & (2) 24: 35 \\ (3) 16: 35 & (4) 24: 25 \\ (3) 16: 35 & (4) 24: 25 \\ (3) 0: 9 & (4) 0: 3 \\ (1) 0: 9 & (4) 0: 3 \\ (1) 0: 9 & (4) 0: 3 \\ (1) -2 & (2) 2 \\ (3) 0 & (4) 1 \\ (3) 0 & (4) 1 \\ \end{array} \right) \\ \begin{array}{c} \text{then the value of } \sqrt{3} \frac{1}{\sqrt{2} 0 \text{ (b) } (3)} \\ \text{then the value of } \sqrt{3} \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{then the value of } \sqrt{3} \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{then the value of } \sqrt{3} \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{then the value of } \sqrt{3} \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{then the value of } \sqrt{3} \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{then the value of } \sqrt{3} \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{then the value of } \sqrt{3} \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{then the value of } \sqrt{3} \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{then the value of } \sqrt{3} \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{then the value of } \sqrt{3} \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{then the value of } \sqrt{3} \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{then the value of } \sqrt{3} \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{the target of a of (3) } \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{the target of (3) } \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{the target of (3) } \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{the target of (3) } \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{the target of (3) } \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{the target of (3) } \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{the target of (3) } \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{the target of (3) } \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{the target of (3) } \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{the target of (3) } \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{the target of (3) } \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{the target of (3) } \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{the target of (3) } \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{the target of (3) } \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{the target of (3) } \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{the target of (3) } \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{the target of (3) } \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{the target of (3) } \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{the target of (3) } \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{the target of (3) } \frac{1}{\sqrt{2} 0 \text{ (c) } (3)}$	$\frac{4}{3}$ st possil :5 :1 ca + ab. 5 1 expressi . ² + 12x - 1
$ \begin{array}{c} (3) 1:1 & (4) 2:1 \\ 13. If a: b = 2:3, b : c = 4:5 \text{ and } \\ c: d = 6:7, \text{then } :d = \\ (1) 12: 35 & (2) 24: 35 \\ (3) 16: 35 & (2) 24: 35 \\ (3) 16: 35 & (4) 24: 25 \\ (3) 16: 35 & (4) 24: 25 \\ (3) 0: 9 & (4) 0: 3 \\ (1) 0: 9 & (4) 0: 3 \\ (1) 0: 9 & (4) 0: 3 \\ (1) -2 & (2) 2 \\ (3) 0 & (4) 1 \\ (3) 0 & (4) 1 \\ \end{array} \right) \\ \begin{array}{c} \text{then the value of } \sqrt{3} \frac{1}{\sqrt{2} 0 \text{ (b) } (3)} \\ \text{then the value of } \sqrt{3} \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{then the value of } \sqrt{3} \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{then the value of } \sqrt{3} \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{then the value of } \sqrt{3} \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{then the value of } \sqrt{3} \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{then the value of } \sqrt{3} \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{then the value of } \sqrt{3} \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{then the value of } \sqrt{3} \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{then the value of } \sqrt{3} \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{then the value of } \sqrt{3} \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{then the value of } \sqrt{3} \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{then the value of } \sqrt{3} \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{the target of a of (3) } \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{the target of (3) } \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{the target of (3) } \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{the target of (3) } \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{the target of (3) } \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{the target of (3) } \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{the target of (3) } \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{the target of (3) } \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{the target of (3) } \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{the target of (3) } \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{the target of (3) } \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{the target of (3) } \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{the target of (3) } \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{the target of (3) } \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{the target of (3) } \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{the target of (3) } \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{the target of (3) } \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{the target of (3) } \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{the target of (3) } \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{the target of (3) } \frac{1}{\sqrt{2} 0 \text{ (c) } (3)}$	$\frac{4}{3}$ st possil :5 :1 ca + ab. 5 1 expressi . ² + 12x - 1
$ \begin{array}{c} (3) 1:1 & (4) 2:1 \\ 13. If a: b = 2:3, b : c = 4:5 \text{ and } \\ c: d = 6:7, \text{then } :d = \\ (1) 12: 35 & (2) 24: 35 \\ (3) 16: 35 & (2) 24: 35 \\ (3) 16: 35 & (4) 24: 25 \\ (3) 16: 35 & (4) 24: 25 \\ (3) 0: 9 & (4) 0: 3 \\ (1) 0: 9 & (4) 0: 3 \\ (1) 0: 9 & (4) 0: 3 \\ (1) -2 & (2) 2 \\ (3) 0 & (4) 1 \\ (3) 0 & (4) 1 \\ \end{array} \right) \\ \begin{array}{c} \text{then the value of } \sqrt{3} \frac{1}{\sqrt{2} 0 \text{ (b) } (3)} \\ \text{then the value of } \sqrt{3} \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{then the value of } \sqrt{3} \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{then the value of } \sqrt{3} \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{then the value of } \sqrt{3} \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{then the value of } \sqrt{3} \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{then the value of } \sqrt{3} \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{then the value of } \sqrt{3} \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{then the value of } \sqrt{3} \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{then the value of } \sqrt{3} \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{then the value of } \sqrt{3} \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{then the value of } \sqrt{3} \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{then the value of } \sqrt{3} \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{the target of a of (3) } \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{the target of (3) } \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{the target of (3) } \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{the target of (3) } \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{the target of (3) } \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{the target of (3) } \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{the target of (3) } \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{the target of (3) } \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{the target of (3) } \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{the target of (3) } \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{the target of (3) } \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{the target of (3) } \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{the target of (3) } \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{the target of (3) } \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{the target of (3) } \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{the target of (3) } \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{the target of (3) } \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{the target of (3) } \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{the target of (3) } \frac{1}{\sqrt{2} 0 \text{ (c) } (3)} \\ \text{the target of (3) } \frac{1}{\sqrt{2} 0 \text{ (c) } (3)}$	st possil is :5 :2 + c^2 = : ca + ab. 5 1 expressi 2 + $12x -$ 1
110. If $a: b = 2^{-3}$, $b: c = 4:5$ and c: d = 6:7, them $a: d = 4$ (1) a right-angled triangle (1) 12: 35 (2) 24: 35 (2) 24: 35 (3) an isosceles triangle (3) 16: $5 - (4)2 + 2b$ (3) an isosceles triangle (3) 16: $5 - (4)2 + 2b$ (3) an isosceles triangle (3) 16: $5 - (4)2 + 2b$ (3) an isosceles triangle (3) an equilateral triangle (3) an equilateral triangle (3) 0.9 (4) 0.03 (2) 0.09 (4) 0.3 (4) 0.3 (4) 0.3 (4) 0.3 (4) 0.5 (4) 0.5 (4) 0.5 (2) 1.6 (3) 0.6 (4) 0.5 (4) 0.5 (2) 1.6 (3) 0.6 (4) 0.5 (4) 0.6	st possil is :5 :2 + c^2 = : ca + ab. 5 1 expressi 2 + $12x -$ 1
$\begin{array}{c} c: d = 6: 7, \mbox{them} : d = \\ (1) 12: 35 (2) 24: 35 \\ (3) 16: 35 (4) 24: 25 \\ (3) 16: 35 (4) 24: 25 \\ (3) 16: 35 (4) 24: 25 \\ (4) an equilateral triangle \\ (4) an equilateral triangle \\ (5) 1.5 (2) 1.5 \\ (5) 1.5 (2) 1.5 \\ (6) 1.5 (2) 1.6 \\ (6) 0.9 (4) 0.3 \\ (1) 0.09 \\ (3) 0.9 (4) 0.3 \\ (1) -2 (2) 2 \\ (3) 0 (4) 1 \\ (4) 0 (4) 1 \\ (4$	is : 5 : 1 : 2 ² + c ² = : ca + ab. 5 1 expressi - ² + 12x - 1
(1) 12: 35 (2) 24: 35 (3) an isosceles triangle (3) an isosceles triangle (3) an isosceles triangle (4) an equilateral triangle (5) an equilateral triangle (6) an equilateral triangle (7) an equilateral triangle (8) 0.9 (4) 0.3 (9) (4) 0.3 (1) -2 (2) 2 (1) -2 (2) 2 (3) 10 (3) 10 (3) 10 (4) 10 (5) 10 (5) 10 (4) 10 (5) 10 (5) 10 (5) 10 (5) 10 (5) 10 (6) 10 (7) 10	: 5 : 1 $c^{2} + c^{2} = 1$ ca + ab. 5 1 expressi $c^{2} + 12x - 1$ 1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$: 1 $c^{2} + c^{2} = 1$ ca + ab. 5 1 expressi $c^{2} + 12x - 1$ 1
$ \begin{array}{c} \textbf{116. The value of \sqrt{\$0000729} is \\ (1) 0.03 & (2) 0.09 \\ (3) 0.9 & (4) 0.3 \\ \textbf{117. If } the value of x^{10} + \frac{1}{x^{10}} is \\ (1) -2 & (2) 2 \\ (3) 0 & (4) 1 \\ \end{array} \begin{array}{c} \textbf{124. ABCD is a cyclic quadralateral \\ from the point O (centre of the transverse of x and \frac{1}{x} be 1, \\ (1) B0^{\circ} & (2) 150^{\circ} \\ (3) 80^{\circ} & (4) 90^{\circ} \\ (1) -2 & (2) 2 \\ (3) 0 & (4) 1 \\ \end{array} \begin{array}{c} \textbf{124. ABCD is a cyclic quadralateral \\ rom the point O (centre of the transverse of x and \frac{1}{x} be 1, \\ (1) B0^{\circ} & (2) 150^{\circ} \\ (3) 80^{\circ} & (4) 90^{\circ} \\ (1) -2 & (2) 2 \\ (3) 0 & (4) 1 \\ \end{array} $	$c^{2} + c^{2} = c^{2} + ab.$ $ca + ab.$
$ \begin{array}{c} (1)\ 0.03 & (2)\ 0.09 \\ (3)\ 0.9 & (4)\ 0.3 \\ 117. If the average of x and \frac{1}{x} be 1, (1)\ 12^{-2}\ (2)\ 2^{-2}\ (3)\ 20^{-4}\ (1)\ 12^{-2}\ (2)\ 2^{-2}\ (3)\ 20^{-4}\ (1)\ 12^{-2}\ (2)\ 2^{-2}\ (3)\ 20^{-4}\ (1)\ 12^{-2}\ (2)\ 2^{-2}\ (3)\ 20^{-4}\ (1)\ 12^{-2}\ (2)\ 2^{-2}\ (3)\ 20^{-4}\ (1)\ 12^{-2}\ (2)\ 2^{-2}\ (3)\ 20^{-4}\ (1)\ 12^{-2}\ (2)\ 2^{-2}\ (3)\ 20^{-4}\ (1)\ 12^{-2}\ (2)\ 2^{-2}\ (3)\ 20^{-4}\ (1)\ 12^{-2}\ (2)\ 2^{-2}\ (3)\ 20^{-4}\ (1)\ 12^{-2}\ (2)\ 2^{-2}\ (3)\ 20^{-4}\ (1)\ 12^{-2}\ (2)\ 2^{-2}\ (3)\ 20^{-4}\ (1)\ 20^{-2}\ (2)\ 2^{-2}\ (3)\ 20^{-4}\ (1)\ 20^{-2}\ (2)\ 2^{-2$	ca + ab. 5 1 expressi 2 ² + 12x - 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 1 expressi . ² + 12x - 1
$ \begin{array}{c} \begin{array}{c} (3) & (2) & (3) & (3) \\ (3) & (2) & (3) & (3) \\ (1) & (2) & (2) & (3) \\ (1) & (2) & (2) & (3) \\ (1) & (2) & (2) & (3) \\ (1) & (2) & (2) & (3) \\ (1) & (2) & (2) & (3) \\ (1) & (3) & (4) & (4) & (2) \\ (3) & (4) & (4) & (2) & (2) \\ (3) & (4) & (4) & (2) & (2) \\ (3) & (4) & (4) & (2) & (2) \\ (3) & (4) & (4) & (2) & (2) \\ (3) & (4) & (4) & (2) & (2) \\ (3) & (4) & (4) & (2) & (2) \\ (3) & (4) & (4) & (2) & (2) \\ (3) & (4) & (4) & (2) & (2) \\ (3) & (4) & (4) & (2) & (2) \\ (3) & (4) & (4) & (2) & (2) & (2) \\ (3) & (4) & (4) & (2) & (2) & (2) \\ (3) & (4) & (4) & (2) & (2) & (2) \\ (3) & (4) & (4) & (2) & (2) & (2) \\ (3) & (4) & (4) & (2) & (2) & (2) \\ (3) & (4) & (4) & (2) & (2) & (2) & (2) \\ (3) & (4) & (4) & (2) & (2) & (2) & (2) \\ (3) & (4) & (4) & (2) & (2) & (2) & (2) & (2) & (2) \\ (3) & (4) & (4) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) \\ (3) & (4) & (4) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) & (2) \\ (3) & (4) &$	1 expressi : ² + 12x - 1
117. If the average of x and $\frac{1}{x}$ be 1, or $2.50x = 90^\circ$, then the measure of the value of the $\frac{1}{x}$ be 1, or $2.50x = 90^\circ$, then the measure of the value of the $\frac{1}{x}$. Find the value of the $\frac{1}{x^{10}}$ is (3) 80° (4) 90° (4) 10° (1) 12 (2) (0) (1) 12 (2) (2) (3) 0 (4) 11 (2) 120 (4) 10 (4) 11 (2) (2) (2) (3) 0 (4) 11 (2) (2) (2) (3) 0 (4) 11 (2) (2) (2) (3) (2) (4) 11 (2) (2) (2) (3) (2) (4) 11 (2) (2) (2) (3) (2) (4) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	expressi :² + 12x - 1
then the value of $x^{1/2} + \frac{1}{x^{1/2}}$ is (1) 180^{+} (2) 150^{+} (3) 80^{+} (4) 90^{+} (1) 10^{+} (2) 10^{-} (1) 10^{+} (2) 10^{+} (1) 12^{-} (2) 2^{-} (3) 10^{+} (3) 10^{-} (4) 10^{+} (3) 10^{-} (4) 10^{+} (3) 10^{-} (4) 11^{+} (3) 10^{-} (4) 11^{+} (3) 10^{-} (4) 11^{+} (3) 10^{-} (4) 11^{+} (3) 10^{-} (4) 11^{+} (3) 10^{-} (4) 11^{+} (3) 10^{-} (4) 11^{+} (3) 10^{-} (4) 11^{+} (3) 10^{-} (4) 11^{+} (3) 10^{-} (4) 11^{+} (4) 10^{+} (4) 10^{+} (5) 11^{+} (5) 11^{+} (5) 11^{+} (5) 11^{+} (7) 11	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c} (3) \ 00 \ (3) \ 50^{-0} \ (3) \ 50^{-0} \ (3) \ 50^{-0} \ (3) \ 50^{-0} \ (3) \ 10^{-2} \ (2) \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
(3) 0 (4) 1 and the rest of the shares is 133. If $x + \frac{1}{2} = 2$, find the	
(3) 0 (4) 1 and the rest of the shares is a start $\frac{1}{x} = 2$, find the constant $\frac{1}{x} = 2$, find the	
118 If the operation Q is defined for grouply divided areas Q and D	value of
all real numbers α and b by the If the profit on each share in-	
an real numbers a and b by the creases from 5% to 7%. P earns $\left(x^2 + \frac{1}{x^2}\right)\left(x^3 + \frac{1}{x^3}\right)$	
relation a(·) b =	
5 ment of K on the shares is (1) 8 (2) 2	
then $2\odot \{3\odot (-1)\} = ?$ (1) Rs. 20,000 (2) Rs. 15,000 (3) 6 (4) 4	
(1) 2 (2) 4 (3) Rs. 10,000 (4) Rs. 40,000 3(2011) 3(2011)	
(1) 2 (2) 4 (3) -4 (4) -2 119 (i) it the control of original AB is a pound interest for 2 years at 20% 134. If $x = \frac{\sqrt{m+1} + \sqrt[3]{m-1}}{\sqrt[3]{m+1} - \sqrt[3]{m-1}}$. then th
The of a the centre of a chicle. Ab is a	
chord of the circle but not its di- more if the interaction would fetch Rs. 482 value of $x^3 - 3mx^2 + 3$	
ameter. OC is perpendicular to AB. If OC = CB and radius of the half yearly than if it was pay-	
AB. If OC = CB and radius of the circle be 7 cm, then the length of able annually. The sum is $(1) 0$ $(2) \pi$	
AB in (1) Bs 30.000 (2) Br 40.000	
(2) P= 10.000 (4) P= 00.000	
(1) / J2 cm (2) 14 cm m	
7 127. A man travels $\frac{2}{15}$ of the total 135. A can finish a work in a down and O in 1	24 days,
(3) 7 cm $(4) 7 cm$ $(4) 7 cm$	2 days.
120. In Δ ABC, D, E, F are mid-points journey by rail, ⁹ / ₂₀ by car and are forced to leave aff	
of AB, BC, CA respectively and the remaining 10 km on foot. His A in	as done k
(1) 24 (2) 28 (1) 10 days (2) 10	2 days
(3)6 (4)12	lavs
121. If in a triangle ABC, the angles at B and C are 1.5 and 2.5 times boards at an auction. He sold 80 136. When 7 is subtracted f	
of the angle at A respectively of them at a profit of Rs. 4,000 a number, the result is	
then angle at B is and the rest at a loss of Rs. is the number?	
(1) 36° (2) 54° 1;200. On the whole, he gained (1) 8 (2) 9	
(3) 48° (4) 72° 10%. Then the cost of each cup- (3) 6 (4) 7	
122. In xy-plane, a straight line I. 137. The least number whi	ch shoul
bisects the 1st quadrant and (1) Rs. 210 (2) Rs. 190 be multiplied to 243 to	get a per
another straight line L_2 trisects (3) Rs. 200 (4) Rs. 180 fect cube is	

ble

- 138. In a basket, there are 125 flowers. A man goes to worship and offers as many flowers at each temple as there are temples in the eity. Thus he needs to baskets of flowers. Find the number of temples in the eity.

 25 (2) 24
- 139. Product of the three consecutive numbers whose sum is 15, is (1) 120 (2) 150 (3) 125 (4) 105
- 140. The simplified value of

$$999\frac{1}{7} + 999\frac{2}{7} + 999\frac{3}{7} + 999\frac{4}{7}$$

$$+ 999\frac{5}{7} + 999\frac{6}{7} \text{ is}$$
(1) $10009\frac{2}{7}$ (2) $5994\frac{6}{7}$
(3) $9999\frac{2}{7}$ (4) 5997

- 141. 50 boxes with equal weights were loaded in a ship. 5 more boxes each weighing 105 kg were later added, making the average weight of all the 55 boxes as 95 kg. The weight of each of the 50 boxes first loaded is (1) 98 kg (2) 94 kg (2) 95 the (2) 90 h
- 142. In a club, the average age of the members is 30 years, the average age of the male members is 34 years and that of the female members is 26 years. The percentage of the male members is (1) 50% (2) 60%
- 143. In 60 litres beverage, the ratio of syrup and water is 3: 7. If the ratio of the syrup and water is to be made 2: 5, then the amount of water to be further added is (1) 5 litres (2) 2.5 litres (3) 2 litres (4) 8 litres
- 144. If a trader sold an article at Rs.3,060 after allowing 15% and 10% successive discounts on marked price, then the marked price is (1) Rs. 5,000 (2) Rs. 6,000 (3) Rs. 3,000 (4) Rs. 4,000

45.	The area of a	trapezium is 105	
	sq. m and, the	lengths of its par-	
	allel sides are	9 m and 12 m re-	
	spectively. Th	en the height of the	
	trapezium is		
	(1) 15 m	(2) 12 m	

		(4)	

Directions (146-150) : The following pie chart shows the marks obtained by a student in an examination, who scored 720 marks in all. Study the diagram and answer the questions given below.

146. The marks scored in Science are (1) 200^{1±udynat}(2)³300 (3) 75 (4) 150

147. The subject in which the student

scored $16\frac{2}{3}$ % of his total score

is

(1) Bengali

(2) History

(3) English

(4) Mathematics

148. The subject in which the student scored 190 marks is

(1) Mathematics

(2) Bengali

(3) English

(4) Science

149. The marks scored in Mathematics and English together differ from the total marks scored in Bengali, History and Science by (1) 85 (2) 61 (3) 120 (4) 72

150. The marks scored in English, differ from the marks scored in Science by
(1) 75 (2) 15
(3) 80 (4) 60

ENGLISH COMPREHENSION

Directions (151–155) : In the following questions, some parts of the sentences have errors and some have none. Find out which part of a sentence has an error The number of that part is the answer. If a sentence is free from error, your answer is (4) i.e. No error.

- I could (1)/ hardly believe (2)/ what he said. (3)/ No error (4)
- 152. The Government wanted to play the role (1)/ of a felicitator only and was (2)/ keen on optimal development. (3)/ No error (4)
- 153. Admittance for (1)/ the inaugural ceremony was (2)/ only by special tickets. (3)/ No error (4)
- 154. Pulses when well cooked (1)/ are not only appetizing (2)/ as well as nutritious. (3)/ No error (4)
- 155. Martin Luther king was one of the leaders (1)/ who (2)/ has followed Mahatma Gandhi, (3)/ No error (4)

Directions (156-160) : In the following questions, sentences are given with blanks to be filled in with an appropriate word(s). Four alternatives are suggested for each question. Choose the correct alternative out of the four as your answer.

- 166. In certain traditions, the hash band as _____ at the breadwinner and the wife is expected to play a _____ role.
 (1) counted; unequal
 (2) trasted; unique
 (3) perceived; subscrient
 (4) believed; subscrient
 157. The two parties have to each other's sensibilities and ______ towards a win win merger;
 (1) seek: move
 (2) develop look
 (3) reapect; work
 (4) accept; develop
 (5). The land been
 (2) that may pocket ______
 (1) realized; had been
 (2) and realized; was been
 (3) and realized; was been
 (3) and realized; was been
 (3) and realized; was been
- 159. Juseph _____ from his job because he was _____ for promotion

(1) left; dec	lined	
(2) gave up	refused	
(3) left; ask	ed	
(4) resigned	sidelined	
160. Only	neonle aro	
after death.		
(1) virtual;]		
(2) virtuous	; remembered	
(3) brave; fo	remembered	
(4) vicious;	dmirod	
Directions	(161-165) : In th	
following question	ns, out of the four al	
ternatives, choose	the one which bes	
expresses the me	aning of the given	
word as your answ	ver.	
161. Fallacy		
(1) smart me	We	
(2) unfounde		
(3) famous ir	Wention	
(4) mistaken	belief	
162. Diligent		
(1) conceited		
(2) great		
(3) hard work		
(4) proud	ang	
163. Garrulous		
(1) grumpy		
(3) friendly	(2) important	
164. Zenith	(4) talkative	
(1) hope		
	(2) ideal	
(3) pinnacle	(4) reality	
165. Proximity		
(1) nearness	(2) affinity	
(3) prospect	(4) rapport	
Directions (166-170) : In the	
following questions	, choose the word	
opposite in meaning	to the given word	
as your answer.		
166. Gregarious		
(1) delight	(2) unsociable	
(3) social		
167. Taciturn		
(1) talkative	(2) yielding	
(3) tactful	(4) foolish	
168. Archaic		
(1) updated		
(2) antediluvia		
(3) modern		
(4) obsolete		
169. Inadvertent		
(1) advertise	(2) pretend	
(3) indifferen.	L. "horate	
70. Verbose		
(1) bogus	(2) brief	
	(4) rubbish	
	100000000000000000000000000000000000000	

Discosti dana anno	
Directions (171-175) : In the ollowing questions, four alternative	
re given for the idiom/phrase printe n bold. Choose the alternative which	d
est expresses the meaning of the id	
om/phrase as your answer	
171. In spite of his recent financia	
troubles, Ashok has not learn	£ _
to cut his coat according to his	
cloth.	
(1) overcome his problems	
(2) wear modest clothes	
(3) improve his tailoring abili- ties	
	1
72. She keeps blowing hot and	
cold and therefore, nobody can befriend her for long.	
(1) being friendly at one moment	
and unfriendly the next	1
(2) trying to cool the situation	1
down and then raking it up	
(3) being unfriendly and critical	
(4) being good and bad alternate- ly	
3. The secretary had the informa-	
tion at hen fingertips.	
(1) on her typewriter	18
(2) readily available	
(3) in the compact disc	
(4) not accessible	
1. To take the bull by the horns	
(1) to check rumours from	
spreading	foll
(2) to inflict a crushing defeat	
upon the enemy	bes
(3) to face danger	ten 18
(4) to restrain anger	
Consoling her daughter, the	
mother said that there was no	
use crying over spilled milk.	
(2) complaining about an event	
that cannot be changed	182
(3) worrying about the milk that was spilled	
(4) to cry having a glass of milk	
Directions (176-180) : In the	
wing questions, a part of the sen-	
is printed in bold . Below are giv-	183
ternatives to the bold part at (1),	
id (3) which may improve the sen-	
. Choose the correct alternative.	
se no improvement is needed, your	

76.	It rained b the day, spo go out.	itterly iling all	throughout our plans to
		tently	

el than the principal called him

(2) and the principal called him

(4) No improvement

will be closed tomorrow

9. You should meet the concerned programme co-ordinators for

wing questions, out of the four alatives, choose the one which can ibstituted for the given words/sen-

award after the death of its author.

ing about and admiring one's own appearance or abilities

(4) Euphemism

ed in medieval Europe

184. Scholarly and l	earned
(1) Wise	(2) Vivacious
(3) Stoic	(4) Erudite
185. A system of gove	ernment in which
the laws of th	e State are be-
lieved to be the	
(1) Theocracy	(2) Democracy
(3) Secularism	
Directions (1:	86-190) : In the
following questions, t	
ferent words out of v	hich one is mis-
spelt. Find the missp	elt word as your
186. (1) territoreal	(2) pharmacy
(3) rapture	(4) remainder
187. (1) cartilage	(2) marriage
(3) privilage	(4) carriage
188. (1) autocracy	(2) hypocrisy
(3) democracy	
(4) idiosyncracy	
189. (1) laboratory	(2) dispensery
(3) foundry	(4) observatory
190. (1) gauge	(2) gauze

(3) gaudy (4) gaurantee Directions (191-200) : In the

following questions, you have two brief passages with 5 questions following each passage. Read the passages carefully and choose the best answer to each question out of the four alternatives.

PASSAGE-I (Question Nos. 191 – 195)

Modernity-snoblery, though not exclusive to our age, has come to assume an unprecedented importance. The reasons for this are simple and of a strictly economic character. Thanks to modern machinery, production is outranning consumption. Organized waste anong consumers in the first condition of our industrial presperity. The second c accomment throws away the better for the producer must do his bit by producing nothing but the most perivabale articles.

- 191. The expression 'production is outrunning consumption' means
 - (1) production is falling short of consumption
 - (2) consumption is much more than production
 - (3) production is in excess of consumption
 - (4) production and consumption are running close to each other

- 192. The best definition of the term 'Modernity-snobbery' is
 - paying too much attention to use things of the latest design
 - (2) giving undue attention to social position
 - (3) better status for those who are up-to-date
 - (4) those who are modern get more respect in the society
- 193. According to the author, 'modern machinery' is giving rise to
 - (1) more waste
 - (2) industrial prosperity
 - (3) more market
 - (4) variety to the consumers
- 194. The production of more dispensable articles is necessary because it will
 - (1) satisfy the immediate needs of the customers
 - (2) compel the customers to go in for new articles
 - (3) attract more customers
 - (4) keep the factories working
- 195. For industrial prosperity, 'modernity-snobbery' is important because in produces people to
 - buy only the most expensive articles to maintain social position
 - (2) help in the production of duplicate articles
 - (3) buy articles which are perishable
 - (4) discard old things for new ones

PASSAGE-II

(Question Nos. 196-200)

Reality television is a gener of television programming which, it is claimed, presents unscripted dramatico rhumorous situations, decuments, actual events, and features ordinary people arther than professional actors. Although the gener has existed in some form or another since the early years of television, the current explosion of popularity dates from around 2000. Part of reality television's appeal is due to its ability to place ordinary peodue to its ability to place and the situational professional has has been atomated by the television alter has the situational colebrities, in talent and performance regrammes such as Pon Idd, though frequently 'Survivo' and Big Brohney' participants also reach some degree of celebrity. Some commentators have said that the name "reality television" is an inaccurate description for severa styles of programmes included in the genere. In competition based programmes such as Survivo' and other assetial lying environment shows like the format of the producer design the format of the producer design day-io day activities and the environment, creating a completely their estimation of the participants, and use careful y designed security and environment and survivo user and environment and security and events, and settings to encourage particular behaviour and conflicts.

- 196. The participants in the Reality Shows are
 - (1) comedians
 - (2) national celebrities
 - (3) professional actors
 - (4) ordinary people
- 197. The format of competition based programmes is decided by the (1) writer of the script (2) professional actors
 - (3) producer
 - (4) participants
- 198. In the first sentence, the writer says, 'it is claimed' because
 - some people insist on the statement
 - (2) he wants to distance himself from the statement
 - (3) he agrees with the statement
 - (4) everyone agrees with the statement
- 199. Reality television
 - has only been popular since 2000
 - (2) has been popular approximately since 2000
 - (3) has been popular since the start of television
 - (4) has been popular since well before 2000
- 200. Reality TV appeals to some because it
 - shows average people in exceptional circumstances
 - (2) can turn ordinary people into celebrities
 - (3) shows eligible males dating women
 - (4) uses exotic locations