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General Instructions to Candidates : 
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 Calculations, figures and graphs should be shown in the answer sheet itself. 

 Malayalam version of the questions is also provided. 
 Give equations wherever necessary. 
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PART – I 

A. Answer any 4 questions from 1 to 6. Each carries 1 score. (4  1 = 4) 

1. Let R be the relation in the set of natural numbers N given by  

 R = {(a, b) : a = b – 2, b > 6}. Choose the correct answer. 

 (a) (2, 4)  R (b) (3, 8)  R 

 (c) (6, 8)  R (d) (8, 7)  R 

 

2. Value of tan–1 





 

3
sin2 = ______  

 (a) 

3 (b) 3 

 (c) 

6 (d) 


4 

 

3. Slope of the tangent to the curve y = x3 at the point (1, 1) is ______. 

 (a) 1 (b) 3 

 (c) 6 (d) 2 

 

4. Degree of the differential equation xy 
d2y
dx2 + x

2

d

dy








x
– y

dy
dx = 0 is ______ . 

 

5. Direction ratios of the vector 

a  = 

^
i  – 2

^
j + 

^
k is ______ . 

 

6. Cartesian equation of the line that passes through the origin and the point (5, – 2, 3) is 

______ . 
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PART – I 

A. 1  6    4  .             

1  .    (4  1 = 4) 

1.    N     R. 

 R = {(a, b) : a = b – 2, b > 6}.   . 

 (a) (2, 4)  R (b) (3, 8)  R 

 (c) (6, 8)  R (d) (8, 7)  R 

 

2. tan–1 





 

3
sin2    = ______  

 (a) 

3 (b) 3 

 (c) 

6 (d) 


4 

 

3. y = x3   (1, 1)      

______ . 

 (a) 1 (b) 3 

 (c) 6 (d) 2 

 

4. xy 
d2y
dx2 + x

2

d

dy








x
– y

dy
dx = 0     = ______.  

 

5. 

a  = 

^
i  – 2

^
j + 

^
k       ______ . 

 

6. (5, – 2, 3)       

______ . 
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B. Answer all questions from 7 to 10. Each carries 1 score. (4  1 = 4) 

7. Principal value of cos–1









2

3
 is ______ . 

 (a) 

2 (b) 


3 

 (c) 

4 (d) 


6 

 

8. 
d
dx (log 2x) = ______ . 

 (a) 
1
x (b) 

1
2x 

 (c) 2 log x (d) log 2 

 

9. Magnitude of the vector 

a  = 2 î  + ĵ  – 2k̂ is ______ . 

 

10. Direction cosines of x axis is ______ . 

 

PART – II 

A. Answer any 3 questions from 11 to 15. Each carries 2 scores. (3  2 = 6) 

11. If f : R  R, f(x) = cos x and g : R  R, g(x) = 3x2, find fog. 

 

12. Construct a 2  2 matrix A = [aij] whose elements are given by aij = i + 2j. 

 

13. Find the rate of change of the area of a circle with respect to its radius when                

r = 5 cm. 
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B. 7  10    . 1  .  

      (4  1 = 4) 

7. cos–1









2

3
    ______ . 

 (a) 

2 (b) 


3 

 (c) 

4 (d) 


6 

 

8. 
d
dx (log 2x) = ______ . 

 (a) 
1
x (b) 

1
2x 

 (c) 2 log x (d) log 2 

 

9. 

a  = 2 î  + ĵ  – 2k̂    ______ . 

 

10. x axis    ______ . 

 

PART – II 

A. 11  15    3  . 

2  .   (3  2 = 6) 

11. f : R  R, f(x) = cos x  

 g : R  R, g(x) = 3x2,    . fog . 

 

12. A = [aij]  2  2    aij = i + 2j    

 .  

 

13.        

r = 5 cm  . 
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14. Find the projection of the vector î  + 3 ĵ  + 7k̂ on the vector 7 î  – ĵ  + 8k̂. 

 

15. Find a vector perpendicular to each of the vectors 

a  = 3 î  + 2 ĵ  + 2k̂ and  

 

b = î  + 2 ĵ  – 2k̂. 

 

B. Answer any 2 questions from 16 to 18. Each carries 2 scores. (2  2 = 4) 

16. Find the identity element of the binary operation defined on the set of all rational 

numbers Q by a * b = 
ab
2 . 

 

17. Find the Cartesian equation of the plane that passes through the point (1, 0, 2) and the 

normal to the plane is  î  + ĵ  – k̂. 

 

18. A random variable X has the following probability distribution : 

X 0 1 2 3 

P(X) 0 k 2k 2k 

 Find the value of k. 

 

PART – III 

A. Answer any 3 questions from 19 to 23. Each carries 4 scores. (3  4 = 12) 

19. Let f : R  R be given by f(x) = 
2x + 1

3  

 (i) Show that f is invertible.   (3) 

 (ii) Find the inverse of f.   (1) 
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14. î  + 3 ĵ  + 7k̂   7 î  – ĵ  + 8k̂    
.  

 

15. 

a  = 3 î  + 2 ĵ  + 2k̂, 


b = î  + 2 ĵ  – 2k̂  


a   


b    

 .   

 

B. 16  18    2  

. 2  .   (2  2 = 4) 

16. Q    a * b = 
ab
2  .  

   . 

  

17. (1, 0, 2)     î  + ĵ  – k̂   
     . 

 

18. X       
 : 

X 0 1 2 3 

P(X) 0 k 2k 2k 

 k   .  

 

PART – III 

A. 19  23   3  . 4  

.    (3  4 = 12) 

19. f : R  R  f(x) = 
2x + 1

3    .  

 (i) f   . (3) 

 (ii) f   .    (1) 
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20. Find the intervals in which the function f given by f(x) = 2x3 – 3x2 – 36x + 7 is 

 (a) increasing 

 (b) decreasing 

 

21. Find the area of the region bounded by the curve y2 = 9x, the lines x = 2, x = 4 and the 

X – axis in the first quadrant. 

 

22. Find the general solution of the differential equation .
y

d

dy 2x
xx
  

 

23. Find the shortest distance between the lines whose vector equations are  

 

r  = î  + 2 ĵ  + 3k̂ +  ( î  – 3 ĵ  + 2k̂) 

 

r  = 4 î  + 5 ĵ  + 6k̂ +  (2 î  + 3 ĵ  + k̂) 

 

B. Answer any 1 question from 24 to 25. Carries 4 scores. (1  4 = 4) 

24. Find the area of the triangle with vertices (2, 7), (1, 1) and (10, 8). 

 

25. Find the area of the region bounded by the two parabolas y = x2 and y2 = x. 

 

PART – IV 

 

A. Answer any 3 questions from 26 to 29. Each carries 6 scores. (3  6 = 18) 

26. Prove that 

 (i) tan–1 4
3 + tan–1 1

7 = tan–1 31
17   (3) 

 (ii) Write tan–1

x

x

cos1

cos1




, x <  in the simplest form. (3) 
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20. f(x) = 2x3 – 3x2 – 36x + 7    

 (a)  

 (b)    

  . 

 

21. y2 = 9x   X –  x = 2, x = 4   
     . 

 

22. 2y

d

dy
x

xx
         .    

 

23. 

r  = î  + 2 ĵ  + 3k̂ +  ( î  – 3 ĵ  + 2k̂) 

 

r  = 4 î  + 5 ĵ  + 6k̂ +  (2 î  + 3 ĵ  + k̂) 

       . 

 

B. 24  25     .          

4 .    (1  4 = 4) 

24. (2, 7), (1, 1), (10, 8)     . 

 

25. y = x2, y2 = x     . 

 

PART – IV 

A. 26  29    3  
. 6  .   (3  6 = 18) 

26. (i) tan–1 4
3 + tan–1 1

7 = tan–1 31
17  . (3) 

 (ii) tan–1

x

x

cos1

cos1




, x <    . (3) 
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27. (i) Find the value of k so that the function f(x) = 







2if3

2ifk 2

x        

x    x
 is continuous at             

x = 2.    (3) 

 (ii) Find 
xd

dy
if x2 + xy + y2 = 100.   (3) 

 

28. Find : 

 (i) 




 
(log x)2

x  dx.   (3) 

 (ii) 

 

x
(x + 1) (x + 2) dx.   (3) 

 

29. Solve the Linear Programming Problem graphically : 

 Minimise 

  z = – 3x + 4y 

 subject to 

  x + 2y  8 

  3x + 2y  12 

  x  0 ; y  0 

 

B. Answer any 2 questions from 30 to 32. Each carries 6 scores. (2  6 = 12) 

30. (i) If y = 5 cos x – 3 sin x prove that 
d2y
dx2 + y = 0. (3) 

 (ii) Find 
dy
dx if y = xsinx.   (3) 
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27. (i) f(x) = 







2if3

2ifk 2

x        

x    x   x = 2    k  

 .   (3) 

 (ii) x2 + xy + y2 = 100  
xd

dy . (3) 

 

28. (i) 




 
(log x)2

x  dx.   (3) 

 (ii) 

 

x
(x + 1) (x + 2) dx  .  (3) 

 

29.       

 : 

 Minimise 

  z = – 3x + 4y 

 subject to 

  x + 2y  8 

  3x + 2y  12 

  x  0 ; y  0 

 

B. 30  32    2  

. 6  .   (2  6 = 12) 

30. (i) y = 5 cos x – 3 sin x  
d2y
dx2 + y = 0  . (3) 

 (ii) y = xsinx  
dy
dx  .   (3) 
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31. (i) Evaluate 


0

5
.
. x dx as the limit of a sum.  (4) 

 (ii) Find 
.

.sec x (sec x + tan x) dx.   (2) 

 

32. (i) Verify that the function y = ex + 1 is a solution of the differential equation 

  
d2y
dx2 – 

dy
dx = 0.   (2) 

 (ii) Solve the differential equation : 

  
dy
dx = 

x + y
y    (4) 

 

PART – V 

 

 Answer any 2 questions from 33 to 35. Each carries 8 scores. (2  8 = 16) 

33. (i) Let A = 







23

42
, B = 








 52

31
 find 3A – B. (2) 

 (ii) If A = 










24

23
 and I = 








10

01
, find k so that A2 = kA – 2I. (3) 

 (iii) Express the matrix 







11

53
as the sum of a symmetric matrix and a skew 

symmetric matrix.   (3) 

 

34. (i) Using properties of determinants prove that   
2

2

2

cc1

bb1

aa1

 = (a – b) (b – c) (c – a)  

      (3) 
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31. (i) 


0

5
.
. x dx     . (4) 

 (ii) 
.

.sec x (sec x + tan x) dx .   (2) 

 

32. (i) y = ex + 1   
d2y
dx2 – 

dy
dx = 0    

    . (2) 

 (ii) 
dy
dx = 

x + y
y      . (4) 

 

PART – V 

 

 33  35    2  

. 8  .   (2  8 = 16) 

33. (i) A = 







23

42
, B = 








 52

31
  3A – B . (2) 

 (ii) A = 










24

23
, I = 








10

01
 A2 = kA – 2I  k   . (3) 

 (iii) 







11

53
      

   . (3) 

 

34. (i)      
2

2

2

cc1

bb1

aa1

 = (a – b) (b – c) (c – a) 

 .   (3) 
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 (ii) Solve the following system of equations by matrix method : 

  3x – 2y + 3z = 8 

  2x + y – z = 1 

  4x – 3y + 2z = 4   (5) 

 

35. (i) A and B are two events associated with a random experiment. If P(A) = 0.8, 

P(B) = 0.5 and P(B/A) = 0.4 find  

  (a) P (A  B) 

  (b) P(A/B) 

  (c) P (A  B)   (4) 

 (ii) A bag contains 4 red and 4 black balls, another bag contains 2 red and 6 black 

balls. One of the bags is selected at random and a ball is drawn from the bag 

which is found to be red. Find the probability that the ball is drawn from first 

bag.    (4) 

 

_________ 
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 (ii)       of  

  : 

  3x – 2y + 3z = 8 

  2x + y – z = 1 

  4x – 3y + 2z = 4   (5) 

 

35. (i)       A  B 

. P(A) = 0.8, P(B) = 0.5 and P(B/A) = 0.4 .  

  (a) P (A  B) 

  (b) P(A/B) 

  (c) P (A  B)  . (4) 

 (ii)   4   4     2 

  6   .    

     .   

       

 .   (4) 

 

____________ 
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