Reg. No. : \qquad
Name :

SAY / IMPROVEMENT EXAMINATION, JULY - 2022

Part - III

PHYSICS
Maximum : 60 Scores

Time : 2 Hours
Cool-off time : 15 Minutes

General Instructions to Candidates:

- There is a 'Cool-off time' of 15 minutes in addition to the writing time.
- Use the 'Cool-off time' to get familiar with questions and to plan your answers.
- Read questions carefully before answering.
- Read the instructions carefully.
- Calculations, figures and graphs should be shown in the answer sheet itself.
- Malayalam version of the questions is also provided.
- Give equations wherever necessary.
- Electronic devices except non-programmable calculators are not allowed in the Examination Hall.

PART - I

A. Answer any FIVE questions from 1 to 9. Each carries 1 Score.

1. Work done to bring a charge from one place to another place in an equipotential surface is \qquad .
2. Value of angle of dip at earth's poles.
(a) 0
(b) 90°
(c) 45°
(d) 60°
3. In Young's double slit experiment, the distance between the slits is halved and distance between screen and slits is doubled. What will happen to the bandwidth produced?
(a) No change
(b) Doubled
(c) Increases 4 times
(d) Decreases 4 times
4. The resistance of an ideal ammeter is \qquad .
5. What will be the ratio of radii of two nuclei, if their mass numbers are in the ratio $8: 27$?
6. In hydrogen spectrum the highest energy of state corresponds to $n=\infty$. What is the energy of the highest energy state?
7. A photon of frequency ' v ' has a momentum associated with it. If ' c ' is the velocity of light, the momentum of photon is
(a) $\frac{\mathrm{h} v}{\mathrm{c}^{2}}$
(b) $\mathrm{h} v \mathrm{c}$
(c) $\frac{v}{\mathrm{c}}$
(d) $\frac{\mathrm{h} v}{\mathrm{c}}$
8. The frequency of an electromagnetic wave in free space is $5 \times 10^{19} \mathrm{~Hz}$. What will be the wave length of the electromagnetic wave?

PART - I

$(5 \times 1=5)$

(a) 0
(b) 90°
(c) 45°
(d) 60°

 \qquad (1DめృమM.

(a) $\frac{\mathrm{h} v}{\mathrm{c}^{2}}$
(b) $\mathrm{h} v \mathrm{c}$
(c) $\frac{v}{\mathrm{c}}$
(d) $\frac{\mathrm{h} v}{\mathrm{c}}$

9. The phase difference between current and voltage in an a.c. circuit having inductor only.
(a) 0
(b) $\frac{\pi}{2}$
(c) π
(d) $\frac{\pi}{4}$
B. Answer ALL questions from 10 to 13. Each carries 1 Score.
10. An electric dipole is placed in a uniform electric field. The net resultant force acting on the dipole is \qquad .
11. Write down the equation for drift velocity acquired by an electron when a potential difference is applied to a conductor.
12. Instantaneous a.c. voltage applied to an a.c. circuit is $\mathrm{V}_{(\mathrm{t})}=220 \sin 100 \pi \mathrm{t}$. The frequency of a.c. is \qquad .
13. The velocity of light in a medium is $2.25 \times 10^{8} \mathrm{~m} / \mathrm{s}$. The refractive index of the medium is \qquad .

PART - II

A. Answer any TWO questions from 14 to 17. Each carries 2 Scores.
14. (a) State principle of quantization of electric charge.
(b) Force between two electric charges is 10 N when placed in free space and the force reduces to 5 N when placed in a medium of dielectric constant ' K '. Find the value of ' K '.
15. (a) Force experienced on a charge ' q ' moving with a velocity ' v ' in a direction parallel to the direction of a magnetic field of intensity B is \qquad .
(b) What is the value of magnetic field at the centre of a circular coil of ' n ' turns and radius 'a' carrying a current of I ampere?
16. (a) The power factor of an LCR series circuit is unity. The impedance of the circuit is
(i) Capacitive
(ii) Inductive
(iii) Resistive
(b) Write down the condition for resonance to occur in LCR series circuit.

（a） 0
（b）$\frac{\pi}{2}$
（c）π
（d）$\frac{\pi}{4}$

$(4 \times 1=4)$

 \qquad （ே冋）

 \qquad （8Dக్యm゙

 \qquad （ชDがm．

PART－II

\qquad （1Dద్మm．

（iii）กறைிกัலிவ̆

17. The truth table of a logic gate circuit is given below. Write the name of the logic gate and draw the symbol of the gate.

A	B	Y
0	0	1
0	1	1
1	0	1
1	1	0

B. Answer any TWO questions from 18 to 20. Each carries 2 Scores.
18. Identify the magnetic substances from the below given figures.

19. What will happen to the resolving power of an optical instrument if red light is replaced by violet light? Give reason.
20. Arrange the given electromagnetic waves in the decreasing order of wave lengths, microwaves, visible light, γ-rays, radio waves.

PART - III

A. Answer any THREE questions from 21 to 24. Each carries 3 Scores.
21. A capacitor is a system of two conductors separated by an insulator.
(a) Three capacitors of equal capacitance when connected in series have a net capacitance C_{1} and when connected in parallel have a net capacitance C_{2}. What will be the ratio $\mathrm{C}_{1} / \mathrm{C}_{2}$?
(b) Write down the equations for equivalent capacitance when three capacitors of capacitance $\mathrm{C}_{1}, \mathrm{C}_{2}$ and C_{3} connected in (i) Series (ii) Parallel.

A	B	Y
0	0	1
0	1	1
1	0	1
1	1	0

PART - III

(a) ๑ாே கெ
 ఉュ

22. To analyse electric circuit Kirchhoff's rules are very useful.
(a) State Kirchhoff's loop rule.
(b) Draw the circuit diagram of wheatstone's bridge apparatus.
23. Earth's magnetic field may be specified completely by three quantities called the magnetic elements of earth.

Name and define the magnetic elements of earth.
24. A minimum amount of energy is required to remove an electron from a metal surface.
(a) Name the minimum energy required.
(b) Derive Einsten's photoelectric equation.
B. Answer any TWO questions from 25 to 27. Each carries 3 Scores.
25. You might have noticed while moving in a bus or a car during hot summer day a distant patch of road. Surface of road appears to be wet. This is due to total internal reflection.
(a) Write the conditions for the phenomenon of total internal reflection.
(b) Write the relation between refractive index and critical angle of a medium.
26. Each element has a characteristic spectrum of radiation which it emits.
(a) Name the spectral lines emitted by hydrogen atom.
(b) Name the line spectra of hydrogen atom which lies in the visible region of electromagnetic spectrum.
27. According to Einstein mass and energy are interconvertible.
(a) Calculate the energy equivalent to 1 g of substance.
(b) Write the relation between mass defect and binding energy.

 வఱงஸ゙.

PART - IV

A. Answer any THREE questions from 28 to 31. Each carries 4 Scores. $(3 \times 4=12)$

28. A capacitor is a system of two conductors with charge $+Q$ and $-Q$.
(a) What is the S.I. unit of capacitance?
(b) When two capacitors are connected in series, the capacitance of the combination
(i) increases
(ii) decreases
1
(c) Derive an expression for the energy stored in a capacitor.
29. A rectangular loop carrying a steady current I is placed in a uniform magnetic field of intensity ' B '. If ' A ' is the area of cross-section of the loop.
(a) What is the net force experienced on the loop? 1
(b) Derive an expression for the torque acting on the loop.
30. Lenz's law gives the polarity of the induced e.m.f. in a conductor in a clear and concise fashion.
(a) Lenz's law is a consequence of law of conservation of \qquad .
(b) State Lenz's law.
(c) Of which of the following the e.m.f. induced in a coil does not depend on :
(i) number of turns in the coil.
(ii) resistance of the coil.
(iii) rate of change of magnetic flux.
31. When a capacitor is connected to an a.c. source, it limits or regulates the current, but does not completely prevent the flow of charge.
(a) Draw a circuit diagram consisting of a capacitor and an a.c. source.
(b) Show that in an a.c. circuit containing capacitor only the current leads the voltage.
(c) If the frequency of a.c. is increased, the capacitive reactance of the circuit
(i) increases
(ii) decreases

PART－IV

 （ $3 \times 4=12$ ）

（i）$\omega_{3} \mathrm{~S}_{3} \mathrm{~m}_{3}$
（ii）க্子力חळ్మmb

（a）巳ான்றัறியூ๐ \qquad

 ๔ூலுயிமாலாைை゙：

（i）$\omega_{3} \mathrm{~S}_{3} \mathrm{~m}_{3}$
（ii） $\operatorname{B}_{3} \cap \infty_{3} m!$
B. Answer any ONE question from 32 to 33. Carries 4 Scores.
32. Christiaan Huygen's put forward the wave theory of light. It could satisfactorily explain the phenomena of reflection and refraction of light.
(a) Draw the wave front associated with a point source of light.
(b) With help of neat diagram explain reflection of plane wave using Huygen's principle.
33. A p-n junction is the basic building block of many semiconductor devices.
(a) Identify the figure given below.

(b) Explain the terms 'diffusion' and 'drift'.
(c) Current conducts through a p-n junction diode when it is connected in forward biasing. Draw the circuit diagram of a diode connected in forward biasing.

PART - V

Answer any TWO questions from 34 to 36. Each carries 6 Scores.
34. A small charge ' q ' is placed inside a closed surface.
(a) What is the flux through the surface?
(b) Name and state the law which is used to find the flux through the surface.
(c) Using the above law find the electric field at a point distant ' r ' from an infinitely long straight uniformly charged wire.
35. Resistors are sometimes joined together and there are simple rules for calculation of equivalent resistance of the combination.
(a) The S.I. unit of resistance is \qquad .
(b) Derive an expression to find the equivalent resistance of three resistors $\mathrm{R}_{1}, \mathrm{R}_{2}$ and R_{3} connected in parallel.

4 セேைoఠి.

 กowl 213 .

PART - V

 \qquad (ชD) ω_{3}.

(c) Find the equivalent resistance of the given combination of resistance between A and B.
(i)

(ii)

36. A thin lens is a transparent optical medium bounded by two surfaces, at least one of which should be spherical.
(a) What is the S.I. unit of the power of a lens?
(b) Two thin convex lenses of focal length f_{1} and f_{2} are kept in contact with each other. Draw a neat ray diagram, obtain an expression to find the equivalent focal length of the combination.
(c) Two thin convex lenses of focal lengths 10 cm and 20 cm are kept in contact with each other. Find the equivalent focal length and power of the combination.

(i)

(ii)

 ேேனిகைைைவコ

 களைைカைைை.

