(S.S.L.C.) QUARTERLY EXAMINATION - 2018

MATHEMATICS

Maximum Marks : 100

Time Allowed : 2.30 Hours

10 - STD

Time Allowed : 2.30 Hours						
SECTION Note : i) Answer all the questions. ii) Choose alternatives and write the option code and the	V - I most suitable ans	wer from the gi	ven four $1 = 15$			
Note : i) Answer all the questions. ii) Choose alternatives and write the option code and the	the most ing answer.	15	d) B\A			
1. If $A \subset B$ then $A \cap B$ is a D	i alug of a is a	h a	4) 1			
2. If $\{(7, 11), (5, a)\}$ represents a constant function, $a = \frac{a-b}{b}$ is equal to (a)	<u>u</u> ł	$b = c) \frac{a}{c}$	d) 1			
3. If a, b, c are in A.P. Then $\frac{a-b}{b-c}$ is equal to a)	b	·				
4. If the third term of G.P. is 2, then the product of 1	c) 10	d) 15	The Market			
4. If the third term of G.P. is 2, then the product a_{1}^{2} a) 5^{2} b) 2^{5} 5. if $1 + 2 + 3 + \dots + n = k$ then $1^{3} + 2^{3} + 3^{3}$	$\frac{1}{1} + n^3$ is equal to					
a) K^2 b) k^3	c) $\frac{k(k+1)}{2}$	d) $(k + 1)^3$	d) 31			
 5. if 1 + 2 + 3 + + n = k then 1³ + 2³ + 3⁵ a) K² b) k³ 6. The remainder when x² - 2x + 7 is divided by x - 	- 4 is a) 28 b) 29	c) 30				
7 The Lcm of a^k, a^{k+3}, a^{k+5} where $k \in N$ is a) a^{k+9}	b) a*	c) a^{k+6}	d) a^{k+5}			
8. The GCD of $(x^3 + 1)$ and $x^4 - 1$ is	a) $x^3 - 1$ b) $x^3 + 1$	c) x + 1	d) x - 1			
8. The GCD of $(x^3 + 1)$ and $x^4 - 1$ is 9. If A = $(1 - 2 3)$ and $B = \begin{pmatrix} -1 \\ 2 \\ -3 \end{pmatrix}$ then A + B is	a) $(0 \ 0 \ 0)$ b) $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ c) (-	14) d) not defined	1			
10. If $\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ x \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$, then the value of x and y	respectively, are a) 2, 0	b) 0, 2 c) 0,	-2 a) 1, 1			
i di li vier ef e straight line paralle	l to x - axis is equal to a	a) 0° b) 60°c) 4	45° d) 90°			
 The angle of inclination of a straight line having slope 3 at The equation of a straight line having slope 3 at 	nd y intercept -4 is	x/	4			
 11. The angle of inclination of a straight line having slope 3 at a) 3x - y - 4 = 0 13. In the figure the value x is equal to a) 4.2 b) 3x + y - 4 = 0 c) 3x + y - 4 = 0 d) 3x + y - 4 = 0 <lid) +="" -="" 4="0</li" 4x="" y=""> <li< td=""><td>c) $3x - y + 4 = 0$ d) 3</td><td>x + y + 4 = 0</td><td>E</td></li<></lid)></lid)></lid)></lid)></lid)></lid)></lid)></lid)></lid)></lid)></lid)></lid)></lid)></lid)></lid)></lid)></lid)></lid)></lid)></lid)></lid)></lid)></lid)></lid)></lid)></lid)></lid)></lid)></lid)></lid)>	c) $3x - y + 4 = 0$ d) 3	x + y + 4 = 0	E			
Pardagig		8 / 56	° 10			
13. In the figure the value x is equal to		1) 0.4 56°				
a) 4.2 b) 3.2	c) 0.8	a) 0.4 B/1				
14. In ABC, DE is 11 to BE, meeting AB and at D, a	and E. If $AD = 3cm$, DB	= 2cm and AE =	2./cm, then,			
AC is equal to a) 6.5 cm b) 4.5 cm	c) 3.5 cm	d) 5.5 cm				
	b) 1	c) $\tan^2 \theta$	d) $\cos^2 \theta$			
SECIT	ON - II					
Note : i) Answer 10 questions. ii) Question numbe	r 30 is compulsorily.	Select any 14 que	stions from $10 \times 2 = 20$			
the first 9 questions. 16. Let $A = \{0, 1, 2, 3, 4\}, B = \{1, -2, 3, 4, 5, 6\}$ and	$C = \{2, 4, 6, 7\}$ then find	$A \cup (B \cap C).$				
The second for the D						
17. Draw Venn diagram for $A \cap B^1$. 18. Find the first five terms of the sequence given by $a_1 = 2$, $a_2 = 3 + a_1$ and $a_n = 2a_{n-1} + 5$.						
19 Find S, for the geometric series described here $a = 2$, $t_6 = 400$, $n = 0$.						
20. Solve the following equation by elimination method $3x + y = 8$, $5x + y = 10$.						
21. Fin the quotient and remainder using synthetic division. $(x^3 + x^2 - 3x + 3) + (x - 1)$						
x+2 x-3 V. MURUGAN 07.86806269						
22. Simplify: $\frac{1}{x^2 + 3x + 2} + \frac{1}{x^2 + 2x - 3}$ P.G. ASST Cell No. 47000000)						
23. Construct a 2 x 3 matrix A = $[a_{ij}]$ whose elements are given by $a_{ij} = 2i - 3j $.						
24. If $A = \begin{pmatrix} 4 & -2 \\ 5 & -9 \end{pmatrix}$ and $B = \begin{pmatrix} 8 & 2 \\ -1 & -3 \end{pmatrix}$ "find $6A - 3B$.						
25. Find the area of the triangle whose vertices an	re (1, 2), (-3, 4) and (-5,	-6). 10 -Mäths (I	E.M) Page - 1			

- Find the slope of the straight line passing through the points (3, -2) and (7, 2) 26.
- Find the equation of the straight line whose slope is $\frac{2}{3}$ and passing through (5, -4) 27.

Prove that Identify
$$\sqrt{\frac{1-\cos\theta}{2}} = \cos ec\theta - \cot\theta$$
.

- In the above figure, AP = 3cm, AR = 4.5cm, AQ = 6cm, AB = 5cm 28. 29. and AC = 10cm. Find the length of AD.
- a) The following table represents a function from A = (5, 6m 8m 10)m to B = (19, 15, 9, 11). Where f (x) 2x - 1. 30. Find the values of a and b. (OR)

b) Prove the identify $\frac{\sec\theta - \tan\theta}{\sec\theta + \tan\theta} = 1 - 2\sin\theta\tan\theta + 2\tan^2\theta$ SECTION - III

Note : i) Answer 9 questions. ii) Question number 45 is compulsory. Select any 8 questions from the first 14 questions.

- Let A = {10, 15,20, 25,30, 35, 40, 45, 50} B = {1, 5, 10, 15, 20, 25, 30} and C = {7, 8, 15, 20, 35, 45, 48} 31. Verify $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$.
- In a survey of university students, 64 had taken mathematics course, 94 had taken computer science 32. course, 58 had taken physics course 26 had taken mathematics and computer science, 22 had taken computer science and physics course, and 14 had taken all the three courses. Find the number of students who were surveyed? Find how many had taken on course only?

33. Let A = {6, 9, 15, 18, 21}, B = {1, 2, 4, 5, 6} and
$$f: A \to B$$
 be defined by $f(x) = \frac{1}{3}$

Represent f by (i) an arrow diagram (ii) a set of ordered pairs (iii) a table (iv) a graph

- In an arithmetic series, the sum of first 11 terms is 44 and that of the next 11 terms is 55. Find the 34. arithmetic series.
- Find the sum of first 'n' terms of the series $7 + 77 + 777 + \dots$ 35.
- 36.
- Factorise the polynomial $x^3 23x^2 + 142x 120$. Find the G.C.D. of $x^2 x 2$, $x^2 + x 6$, $3x^2 13x + 14$. 37.

38. Multiply and simplify: $\frac{x^{2-3x-10}}{x^{2-x-20}} \times \frac{x^{2-2x+4}}{x^{3+8}}$. **NURUGAN** 39. If $A = \begin{pmatrix} 3 & 3 \\ 7 & 6 \end{pmatrix}$, $B = \begin{pmatrix} 8 & 7 \\ 0 & 9 \end{pmatrix}$ and $C = \begin{pmatrix} 2 & -3 \\ 4 & 6 \end{pmatrix}$ then find (A+B) C and AB + BC is (A + B) C = AB + BC.

40. If
$$A = \begin{bmatrix} 5 & 2 \\ 7 & 3 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}$ Verify that $(AB)^{\mathsf{T}} = B^{\mathsf{T}}A^{\mathsf{T}}$.

- Find the area of the quadrilateral whose vertices are (-3, 4), (-5, -6), (4, -1) and (1, 2). 41.
- Find the equation of the straight lines each passing through the point (6, -2) and whose sum of the 42. intercepts is 5.
- State and prove basic proportionality theorem of Thales Theorem. 43.
- If $x = a \sec\theta + b \tan\theta$ and $y = a \tan\theta + b \sec\theta$ then prove that $x^2 y^2 = a^2 b^2$. 44.
- a) Find the sum of all 3 digit natural numbers, which are divisible by 8. 45.
 - b) What rational expression should be added to $\frac{x^3 1}{x^2 + 2}$ to get $\frac{2x^3 x^2 + 3}{x^2 + 2}$?

SECTION - IV

Note : Answer both the questions by choosing either of the alternative. $2 \times 10 = 20$

Draw a circle radius 3cm. From an external point 7 cm away from its centre, construct the pair of 46. tangents to the circle and measure their lengths. (OR).

b) Construct $\triangle ABC$ such that BC = 5cm, A = 45 and the median from A to BC is 4cm.

- a) Draw the graph of $y = x^2 + 2x 3$ and hence find the roots of $x^2 x 6 = 0$. (OR) 47. b) The cost of the milk per litre Rs. 15/-. Draw the graph for the relation between the quantity and
 - cost hence find (i) The proportional constant (ii) the cost of 3 litres of milk. 10 Maths (E.M) Page 2

. 1	1
P/	10
1	R
BI	50

x	5	6	8	10
f(x)	а	11	b	19

(OR)