COMMON QUARTERLY EXAMINATION -2022

half

Date: 27-Sep-22

12th Standard Maths

Reg.No. :

Exam Time : 03:00:00 Hrs

I CHOOSE THE CORRECT ANSWER

1) If A, B and C are invertible matrices of some order, then which one of the following is not true? (a) $adj A = |A|A^{-1}$ (b) adj(AB) = (adj A)(adj B) (c) $det A^{-1} = (det A)^{-1}$ (d) $(ABC)^{-1} = C^{-1}B^{-1}A^{-1}$

2) If $\rho(A) = \rho([A | B])$, then the system AX = B of linear equations is

(a) consistent and has a unique solution(b) consistent(c) consistent and has infinitely many solution(d) inconsistent

- 3) If A is a matrix of order $m \times n$, then ρ (A) is _____ (a) m (b) n (c) $\leq \min(m,n)$ (d) $\geq \min(m,n)$
- 4) Cramer's rule is applicable only when _____

(a) $\Delta \neq 0$ (b) $\Delta = 0$ (c) $\Delta = 0$, $\Delta_x = 0$ (d) $\Delta_x = \Delta_y = \Delta_z = 0$

5) If |z| = 1, then the value of $\frac{1+z}{1+\overline{z}}$ is

(a) z (b)
$$\bar{z}$$
 (c) $\frac{1}{z}$ (d) 1

6)

The product of all four values of $\left(cos\frac{\pi}{3} + isin\frac{\pi}{3}\right)^{\frac{\pi}{4}}$ is

(a) -2 (b) -1 (c) 1 (d) 2

7) The complex numbers z_1 , z_2 , and z_3 satisfying $\frac{z_1-z_3}{z_2-z_3} = \frac{1-i\sqrt{3}}{2}$ are the vertices of a triangle which is

(a) of area zero (b) right angled isosceles (c) equilateral (d) obtuse-angle isosceles

- 8) If $x^3+12x^2+10ax+1999$ definitely has a positive zero, if and only if
- (a) a ≥ 0
 (b) a > 0
 (c) a < 0
 (d) a ≤ 0
 9) The polynomial x³ + 2x + 3 has
 - (a) one negative and two imaginary zeros (b) one positive and two imaginary zeros (c) three real zeros (d) no zeros
- 10) If $ax^2 + bx + c = 0$, a, b, c ∈ R has no real zeros, and if a + b + c < 0, then _____ (a) c > 0 (b) c< 0 (c) c=0 (d) c≥0

11) If the product of the roots of $3x^4 - 4x^3 + 2x^2 + x + a = 0$ is 21, then the value of a is _____

12)
$$\tan^{-1}(\frac{1}{4}) + \tan^{-1}(\frac{2}{9})$$
 is equal to

(a) $\frac{1}{2} \cos^{-1}\left(\frac{3}{5}\right)$ (b) $\frac{1}{2} \sin^{-1}\left(\frac{3}{5}\right)$ (c) $\frac{1}{2} tan^{-1}\left(\frac{3}{5}\right)$ (d) $tan^{-1}\left(\frac{1}{2}\right)$

13) If
$$|\mathbf{x}| \leq 1$$
, then $2\tan^{-1} x - \sin^{-1} \frac{2x}{1+x^2}$ is equal to

(a)
$$\tan^{-1}x$$
 (b) $\sin^{-1}x$ (c) 0 (d) π

(4) If x > 1, then
$$2tan^{-1}x + sin^{-1}\left(\frac{2x}{1+x^2}\right)$$

(a) 4 tan⁻¹x (b) 0 (c)
$$\frac{\pi}{2}$$
 (d) π

15) If x + y = k is a normal to the parabola $y^2 = 12x$, then the value of k is

Total Marks : 90

 $20x \ 1 = 20$

(a) 3 (b) -1 (c) 1 (d) 9

- 16) The values of m for which the line $y = mx + 2\sqrt{5}$ touches the hyperbola $16x^2 9y^2 = 144$ are the roots of $x^2 (a + b)x 4 = 0$, then the value of (a+b) is
 - (a) 2 (b) 4 (c) 0 (d) -2
- 17) In an ellipse $5x^2 + 7y^2 = 11$, the point (4, -3) lies _____ the ellipse

(a) on (b) outside (c) inside (d) none

- 18) Find the centre and vertices of the hyperbola $11x^2 25y^2 + 22x + 250y 889 = 0$
 - (a) centre: (-1, 5), vertices: (1, -10), (1, 0) (b) centre: (-1, 5), vertices: (-1, 0), (-1, 10)
 - (c) centre: (--1, 5), vertices: (-6, 5), (4, 5) (d) centre: (-1, 5), vertices: (-4, -5), (6, -5)
- 19) If a vector $\vec{\alpha}$ lies in the plane of $\vec{\beta}$ and $\vec{\gamma}$, then
 - (a) $[\vec{\alpha}, \vec{\beta}, \vec{\gamma}] = 1$ (b) $[\vec{\alpha}, \vec{\beta}, \vec{\gamma}] = -1$ (c) $[\vec{\alpha}, \vec{\beta}, \vec{\gamma}] = 0$ (d) $[\vec{\alpha}, \vec{\beta}, \vec{\gamma}] = 2$
- 20) Distance from the origin to the plane 3x 6y + 2z + 7 = 0 is

(a) 0 (b) 1 (c) 2 (d) 3

21) Let \vec{a} , \vec{b} and \vec{c} be three non- coplanar vectors and let \vec{p} , \vec{q} , \vec{r} be the vectors defined by the relations $\vec{p} = \vec{b} \times \vec{c}$ $\vec{a} = \vec{c} \times \vec{a}$ $\vec{m} = \vec{a} \times \vec{b}$ Then the value of $(\vec{a} + \vec{b}) = (\vec{c} + \vec{c}) \cdot \vec{a} + (\vec{c} + \vec{a}) \cdot \vec{r} =$

22) If \vec{a} and \vec{b} include an angle 120° and their magnitude are 2 and $\sqrt{3}$ then $\vec{a} \cdot \vec{b}$ is equal to _____

(a)
$$\sqrt{3}$$
 (b) $-\sqrt{3}$ (c) 2 (d) $-\frac{\sqrt{3}}{2}$

II ANSWER ANY 7 QUESTION Q.NO 30 COMPLUSARY

 $10 \ge 2 = 20$

 $10 \ge 3 = 30$

23) If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is non-singular, find A^{-1} .

- 24) If A is symmetric, prove that then adj A is also symmetric.
- 25) Simplify the following i i ${}^{2}i^{3}...i^{2000}$
- 26) If α , β and γ are the roots of the cubic equation $x^3+2x^2+3x+4 = 0$, form a cubic equation whose roots are, 2α , 2β , 2γ
- 27) It is known that the roots of the equation x^3 $6x^2$ 4x + 24 = 0 are in arithmetic progression. Find its roots.
- 28) Find the principal value of

$$\sec^{-1}(\frac{2}{\sqrt{3}})$$

- 29) Find the vertex, focus, equation of directrix and length of the latus rectum of the following: $v^2 = -8x$
- 30) Find the equation of the parabola. if the curve ie open leftward, vertex is (2,1) and passing through the point (1, 3)
- 31) Prove by vector method that the parallelograms on the same base and between the same parallels are equal in area.
- 32) Find the value of 5π

 $tan^{-1}(tanrac{5\pi}{4})$

III ANSWER ANY 7 QUESTION Q.NO 40 COMPLUSARY

33) If A and B are any two non-singular square matrices of order n , then adj(AB) = (adj B)(adj A).

34) If $2coslpha=x+rac{1}{x}$ and $2cos\ eta=y+rac{1}{y}$, show that $x^my^n+rac{1}{x^my^n}=2cos(mlpha+neta)$

- 35) Solve the equation $z^3 + 27 = 0$
- 36) If α , β , and γ are the roots of the equation $x^3 + px^2 + qx + r = 0$, find the value of $\Sigma \frac{1}{\beta \gamma}$ in terms of the coefficients.
- 37) Find the value of the expression in terms of x, with the help of a reference triangle. $sin(cos^{-1}(1-x))$
- 38) Simplify $sec^{-1}\left(sec\left(\frac{5\pi}{3}\right)\right)$
- 39) The equation $y = \frac{1}{32}x^2$ models cross sections of parabolic mirrors that are used for solar energy. There is a heating tube located at the focus of each parabola; how high is this tube located above the vertex of the parabola?
- 40) Find the length of the chord intercepted by the circle $x^2 + y^2 2x y + 1 = 0$ and the line x 2y = 0
- 41) Find the equation of the plane passing through the intersection of the planes 2x + 3y -z + 7 = 0 and and x +y -2z + 5 = 0 and is perpendicular to the plane x +y -3z -5 = 0.
- 42) If $\vec{a}, \vec{b}, \vec{c}$ and $\vec{p}, \vec{q}, \vec{r}$ are any two systems of three vectors, and if $\vec{p} = x_1 \vec{a} + y_1 \vec{b} + z_1 \vec{c}$

$$ec{q} = x_2ec{a} + y_2ec{b} + z_2ec{c}, ext{ and}, ec{r} = x_3ec{a} + y_3ec{b} + z_3ec{c} ext{ then } [ec{p}, ec{q}, ec{r}] = egin{bmatrix} x_1 & y_1 & z_1 \ x_2 & y_2 & z_2 \ x_3 & y_3 & z_3 \end{bmatrix} [ec{a}, ec{b}, ec{c}]$$

III ANSWER THE ALL QUESTION

43) a) Find all the roots $(2-2i)^{\frac{1}{3}}$ and also find the product of its roots.

(OR)

7x5 = 35

- b) A straight line passes through the point (1, 2, -3) and parallel to $4\hat{i} + 5\hat{j} 7\hat{k}$. Find
- (i) vector equation in parametric form
- (ii) vector equation in non-parametric form
- (iii) Cartesian equations of the straight line.

44) a) Prove that
$$\tan^{-1} x + \tan^{-1} z = \tan^{-1} \left\lfloor \frac{x+y+z-xyz}{1-xy-yz-zx} \right\rfloor$$

- (OR)
- b) Find the acute angle between the following lines
- 2x = 3y = -z and 6x = -y = -4z.
- 45) a) Find the equations of tangent and normal to the parabola $x^{2}+6x+4y+5 = 0$ at (1, -3).

(OR)

- b) Find the equation of the tangent at t = 2 to the parabola $y^2 = 8x$. (Hint: use parametric form)
- 46) a) If the system of equations px + by + cz = 0, ax + qy + cz = 0, ax + by + rz = 0 has a non-trivial solution and $p \neq a$, $q \neq b$, $r \neq c$, prove that $\frac{p}{p-a} + \frac{q}{q-b} + \frac{r}{r-c} = 2$.

- b) Determine the values of λ for which the following system of equations x + y + 3z = 0, $4x + 3y + \lambda z = 0$
- 0, 2x + y + 2z = 0 has

(i) a unique solution

- (ii) a non-trivial solution
- 47) a) Show that the equation $x^3 + qx + r = 0$ has two equal roots if $27r^2 + 4q^3 = 0$.

(OR)

- b) Find the equation of the plane passing through the line of intersection of the planes x + 2y + 3z = 2and x - y + z = 3 and at a distance $\frac{2}{\sqrt{3}}$ from the point (3, 1, -1)
- 48) a) If $z_1 = 2 + 5i$, $z_2 = -3 4i$, and $z_3 = 1 + i$, find the additive and multiplicate inverse of z_1 , z_2 and z_3

b) If z_1 , z_2 , and z_3 are three complex numbers such that $|z_1| = 1$, $|z_2| = 2|z_3| = 3$ and $|z_1 + z_2 + z_3| = 3$

1, show that $|9z_1z_2 + 4z_1z_2 + z_2z_3| = 6$

49) a) Solve the equations: $6x^4 - 35x^3 + 62x^2 - 35x + 6 = 0$

(OR)

b) Find the vertex, focus, equation of directrix and length of the latus rectum of the following: $y^2-4y-8x+12 = 0$

COMMON QUARTERLY EXAMINATION -2022

half 12th Standard

Maths

Date: 30-Aug-22

20x 1 = 20

Reg.No. :

Time : 03:00:00 Hrs

Total Marks : 90

I CHOOSE THE CORRECT ANSWER

1) If A, B and C are invertible matrices of some order, then which one of the following is not true?

(a) $adj A = |A|A^{-1}$ (b) adj(AB) = (adj A)(adj B) (c) $det A^{-1} = (det A)^{-1}$ (d) $(ABC)^{-1} = C^{-1}B^{-1}A^{-1}$

2) If ρ (A) = ρ ([A | B]), then the system AX = B of linear equations is

(a) consistent and has a unique solution (b) consistent

- (c) consistent and has infinitely many solution (d) inconsistent
- 3) If A is a matrix of order m imes n, then ho (A) is _____
 - (a) m (b) n (c) $\leq \min(m,n)$ (d) $\geq \min(m,n)$
- Cramer's rule is applicable only when _____

(a) $\Delta \neq 0$ (b) $\Delta = 0$ (c) $\Delta = 0$, $\Delta_x = 0$ (d) $\Delta_x = \Delta_y = \Delta_z = 0$

- 5) If |z| = 1, then the value of $\frac{1+z}{1+\overline{z}}$ is (a) z (b) \overline{z} (c) $\frac{1}{z}$ (d) 1
- 6)

The product of all four values of $\left(cos\frac{\pi}{3}+isin\frac{\pi}{3}\right)^{\frac{2}{4}}$ is

(a) -2 (b) -1 (c) 1 (d) 2

7) The complex numbers z_1 , z_2 , and z_3 satisfying $\frac{z_1-z_3}{z_2-z_3} = \frac{1-i\sqrt{3}}{2}$ are the vertices of a triangle which is

(a) of area zero (b) right angled isosceles (c) equilateral (d) obtuse-angle isosceles

8) If $x^3+12x^2+10ax+1999$ definitely has a positive zero, if and only if

(a) $a \ge 0$ (b) a > 0 (c) a < 0 (d) $a \le 0$

9) The polynomial $x^3 + 2x + 3$ has

(a) one negative and two imaginary zeros (b) one positive and two imaginary zeros

(c) three real zeros (d) no zeros

10) If $ax^2 + bx + c = 0$, a, b, $c \in R$ has no real zeros, and if a + b + c < 0, then _____

(a) c > 0 (b) c < 0 (c) c=0 (d) $c \ge 0$

11) If the product of the roots of $3x^4 - 4x^3 + 2x^2 + x + a = 0$ is 21, then the value of a is _____ (a) 7 (b) -7 (c) -63 (d) 63

12) $\tan^{-1}(\frac{1}{4}) + \tan^{-1}(\frac{2}{9})$ is equal to

(a) $\frac{1}{2}\cos^{-1}\left(\frac{3}{5}\right)$ (b) $\frac{1}{2}\sin^{-1}\left(\frac{3}{5}\right)$ (c) $\frac{1}{2}\tan^{-1}\left(\frac{3}{5}\right)$ (d) $\tan^{-1}\left(\frac{1}{2}\right)$ 13) If $|\mathbf{x}| \leq 1$, then $2\tan^{-1} x - \sin^{-1} \frac{2x}{1+x^2}$ is equal to (a) $\tan^{-1}x$ (b) $\sin^{-1}x$ (c) **0** (d) π 14) If x > 1, then $2tan^{-1}x + sin^{-1}\left(\frac{2x}{1+x^2}\right)$ (a) $4 \tan^{-1}x$ (b) 0 (c) $\frac{\pi}{2}$ (d) π 15) If x + y = k is a normal to the parabola $y^2 = 12x$, then the value of k is (d) 9 (a) 3 (b) -1 (c) 1 16) The values of m for which the line y = mx + $2\sqrt{5}$ touches the hyperbola $16x^2 - 9y^2 = 144$ are the roots of $x^2 - (a + b)x - 4 = 0$, then the value of (a+b) is (a) 2 (b) 4 (c) 0 (d) -2 17) In an ellipse $5x^2 + 7y^2 = 11$, the point (4, -3) lies _____ the ellipse (a) on (b) outside (c) inside (d) none 18) Find the centre and vertices of the hyperbola $11x^2 - 25y^2 + 22x + 250y - 889 = 0$ (a) centre: (-1, 5), vertices: (1, -10), (1, 0) (b) centre: (-1, 5), vertices: (-1, 0), (-1, 10) (c) centre: (--1, 5), vertices: (-6, 5), (4, 5) (d) centre: (-1, 5), vertices: (-4, -5), (6, -5) 19) If a vector $\vec{\alpha}$ lies in the plane of $\vec{\beta}$ and $\vec{\gamma}$, then (a) $[\vec{\alpha}, \vec{\beta}, \vec{\gamma}] = 1$ (b) $[\vec{\alpha}, \vec{\beta}, \vec{\gamma}] = -1$ (c) $[\vec{\alpha}, \vec{\beta}, \vec{\gamma}] = 0$ (d) $[\vec{\alpha}, \vec{\beta}, \vec{\gamma}] = 2$ 20) Distance from the origin to the plane 3x - 6y + 2z + 7 = 0 is (a) 0 (b) 1 (c) 2 (d) 3 21) Let \vec{a} , \vec{b} and \vec{c} be three non- coplanar vectors and let \vec{p} , \vec{q} , \vec{r} be the vectors defined by the relations (a) 0 (b) 1 (c) 2 (d) 3 22) If \vec{a} and \vec{b} include an angle 120° and their magnitude are 2 and $\sqrt{3}$ then \vec{a} . \vec{b} is equal to _____ (a) $\sqrt{3}$ (b) $-\sqrt{3}$ (c) 2 (d) $-\frac{\sqrt{3}}{2}$ **II ANSWER ANY 7 QUESTION Q.NO 30 COMPLUSARY** $10 \ge 2 = 20$ ²³⁾ If A = $\begin{vmatrix} a & b \\ c & d \end{vmatrix}$ is non-singular, find A⁻¹. Answer: We first find adj A. By definition, we get adj A = $egin{bmatrix} +M_{11}&-M_{12}\ -M_{21}&+M_{22} \end{bmatrix}^T = egin{bmatrix} d&-c\ -b&a \end{bmatrix}^T = egin{bmatrix} d&-c\ -c&a \end{bmatrix}^.$ Since A is non-singular, $|A| = ad - bc \neq$ As $A^{-1} = \frac{1}{|A|}$ adj A, we get $A_{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$.

24) If A is symmetric, prove that then adj A is also symmetric.

Answer : Suppose A is symmetric. Then, $A^T = A$ and so, by theorem (vi), we get $adj(A^T) = (adj A)^T \Rightarrow adj A = (adj A)^T \Rightarrow adj A$ is symmetric.

25) Simplify the following

i i ²i³...i²⁰⁰⁰

Answer: $i i^{2} i^{3} \dots i^{2000}$ = $i^{1+2+3+\dots+2000}$ = $i^{\frac{2000\times2001}{2}}$ [$\therefore 1+2+3+\dots n = \frac{n(n+1)}{2}$] = $i^{1000 \times 2001}$ = $i^{2001000}$ = 1

 $[\therefore 2001000 \text{ is divisible by 4 as its last two digits are divisible by 4}]$

26) If α , β and γ are the roots of the cubic equation $x^3+2x^2+3x+4 = 0$, form a cubic equation whose roots are, 2α , 2β , 2γ

```
Answer : The roots of x^3+2x^2+3x^4+=0 are \alpha, \beta, \delta

\therefore \alpha+\beta+\delta=-co-efficient of x^2=-2 ...(1)

\alpha\beta+\beta\delta+\delta\alpha=co-efficient of x=3 ....(2)

-\alpha\beta\delta=+4 \Rightarrow \alpha\beta\delta=-4 ...(3)

Form a cubic equation whose roots are 2\alpha, 2\beta, 2\delta

2\alpha+2\beta+2\delta=2(\alpha+\beta+\delta)=2(-2)=-4 [from (1)]

4\alpha\beta+4\beta\delta+4\delta\alpha=4(\alpha\beta+\beta\delta+\delta\alpha)=4(3)=12 [from (2)]

(2\alpha)(2\beta)(2\delta)=8(\alpha\beta\delta)=8(-4)=-32 [from (3)]

\therefore The required cubic equation is

x^3-(2\alpha+2\beta+2\delta)x^2+(2\alpha\beta+2\beta\delta+2\delta\alpha)x-(2\alpha)(2\beta)(2\delta)=0

\Rightarrow x^3+(-4)x^2+12x+32=0
```

27) It is known that the roots of the equation x^3 - $6x^2$ - 4x + 24 = 0 are in arithmetic progression. Find its roots.

Answer : Let the roots be a-d, a, a+d.

Then the sum of the roots is 3a which is equal to 6 from the given equation.

Thus 3a = 6 and hence a = 2.

The product of the roots is a^{3} - ad^{2} which is equal to -24 from the given equation.

Substituting the value of a, we get $8-2d^2 = -24$ and hence $d = \pm 4$.

If we take d = 4 we get -2, 2, 6 as roots and if we take d = -4, we get 6, 2, -2 as roots (same roots given in reverse order) of the equation.

28) Find the principal value of

$$\sec^{-1}\left(\frac{2}{\sqrt{3}}\right)$$
Answer: $\sec^{-1}\left(\frac{2}{\sqrt{3}}\right)$
Let $\sec^{-1}\left(\frac{2}{\sqrt{3}}\right)$

$$\Rightarrow \frac{2}{\sqrt{3}} = \sec\theta \Rightarrow \cos\theta = \frac{\sqrt{3}}{2}$$

$$\Rightarrow \cos\theta = \cos\left(\frac{\pi}{6}\right)$$

$$\Rightarrow \theta = \frac{\pi}{6}$$

$$\therefore \sec^{-1}\left(\frac{2}{\sqrt{3}}\right) = \frac{\pi}{6}$$

29) Find the vertex, focus, equation of directrix and length of the latus rectum of the following:

 $y^2 = -8x$

Answer: $y^2 = -8x$ The given parabola is left open parabola and $4a = 8 \Rightarrow a = 2$ (a) Vertex is (0, 0) $\Rightarrow h = 0, k = 0$ (b) focus is (h - a, 0 + k) $\Rightarrow (0-2, 0 + 0)$ $\Rightarrow (-2, 0)$ (c) Equation of directrix is x = h + a $\Rightarrow x = 0 + 2 \Rightarrow x = 2$ (d) Length of latus rectum is 4a = 8.

30) Find the equation of the parabola. if the curve ie open leftward, vertex is (2,1) and passing through the point (1, 3)

Answer : Since the curve is open leftward, the required equation of the parabola is

 $(y-k)^2 = -4a(x-h)$ Given vertex (h, k) = (2, 1) $\therefore (y-1)^2 = -4a(x-2)$ (2) Since this pass through (1, 3) we get $(3-1)^2 = -4a(1-2)$ 4 = -4a(-1)a = 1 $\therefore (1) \Rightarrow (y-1)^2 = -4(x-2)$ which is required equation of the parabola

x = 2

31) Prove by vector method that the parallelograms on the same base and between the same parallels are equal in area.

Answer :

Let ABCD be the given parallelogram and $ABC^1 D^1$ be the new parallelogram with same base AB and between the same parallel lines AB and DC.

 \therefore Vector area of parallelogram

$$ABCD = \overrightarrow{AB} \times \overrightarrow{AD}$$

= $\overrightarrow{AB} \times (\overrightarrow{AD^{1}} + D^{1}\overrightarrow{D})$
[By Δ law of addition is Δ ADD¹]
= $(\overrightarrow{AB} \times \overrightarrow{AD^{1}}) + (\overrightarrow{AB} \times D^{1}\overrightarrow{D})$ [: vector product is distributive]
= $(\overrightarrow{AB} \times \overrightarrow{AD}) + 0$ [: \overrightarrow{AB} and $\overrightarrow{DD^{1}}$ are parallel]

= Vector area of parallelogram $ABC^{1}D^{1}$

 \therefore Area of parallelogram ABCD = Area of parallelogram ABC¹D¹.

Hence, the parallelogram on the same base and abetween the same parallels are equal in area.

32) Find the value of

$$tan^{-1}(tan\frac{5\pi}{4})$$
Answer : $tan^{-1}(tan\frac{5\pi}{4})$

$$= tan^{-1}(tan(\pi + \frac{\pi}{4}))$$

$$= tan^{-1}(tan\frac{\pi}{4}) [\because tan(\pi + \theta = tan\theta)]$$

$$= \frac{\pi}{4}\varepsilon\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$$

III ANSWER ANY 7 QUESTION Q.NO 40 COMPLUSARY

10 x 3 = 30

33) If A and B are any two non-singular square matrices of order n , then adj(AB) = (adj B)(adj A).

Answer: Replacing A by AB in adj(A) =
$$|A|A^{-1}$$
 we get
adj $(AB) = |AB|(AB|)^{-1} = (|B|B^{-1})(|A|A^{-1}) = adj(B)adj(A)$
34) If $2\cos\alpha = x + \frac{1}{x}$ and $2\cos\beta = y + \frac{1}{y}$, show that $x^my^n + \frac{1}{x^my^n} = 2\cos(m\alpha + n\beta)$

Answer: Given
$$2\cos \alpha = x + \frac{1}{x}$$

 $\Rightarrow 2\cos \alpha = \frac{x^2 + 1}{x}$
 $\Rightarrow x^2 + 1 = 2x\cos \alpha$
 $\Rightarrow x^2 - 2x\cos \alpha + 1 = 0$
 $\Rightarrow \frac{2\cos\alpha \pm \sqrt{(-2\cos\alpha)^2 - 4(1)(1)}}{2}$
 $= \frac{2\cos\alpha \pm \sqrt{(-2\cos\alpha)^2 - 4}}{2} \left[\because \frac{b \pm \sqrt{b^2 - 4ac}}{2a} \right]$
 $= \frac{2\cos\alpha \pm \sqrt{-\sin^2\alpha}}{2}$
 $= \frac{2\cos\alpha \pm \sqrt{-\sin^2\alpha}}{2}$
 $= \frac{2\cos\alpha \pm \sqrt{-\sin^2\alpha}}{2}$
 $= \frac{2\cos\alpha \pm \sqrt{-\sin^2\alpha}}{2}$ [$\because \sin^2\alpha + \cos^2\alpha = 1$]
 $\Rightarrow x^2 = \cos \alpha \pm \sin \alpha$
Also, $2\cos \beta = y + \frac{1}{y}$
 $\Rightarrow 2\cos \beta = \frac{y^2 + 1}{y}$
 $\Rightarrow y^2 - 2y\cos \beta + 1 = 0$
 $\Rightarrow \frac{2\cos\beta \pm \sqrt{(-2\cos^2\beta^2 - 4(1)(1)}}{2}$
 $= \frac{2\cos\beta \pm \sqrt{4\cos^2\beta - 4}}{2} = \frac{2\cos\beta \pm 2i\sin\beta}{2}$
 $\Rightarrow y = \cos\beta \pm i \sin\beta$
 $x^m y^n + \frac{1}{x^m y^n} = 2\cos(m\alpha + n\beta)$
 $x^m y^n = (\cos \alpha + i \sin m\alpha)(\cos n\beta + i \sin n\beta)$
 $\cos(m\alpha + n\beta) + i \sin(m\alpha + n\beta)$
 $\frac{1}{x^m y^n} = \cos(m\alpha + n\beta) + i \sin(m\alpha + n\beta)$
 $\therefore x^m y^n + \frac{1}{x^m y^n} = \cos(m\alpha + n\beta) + i \sin(m\alpha + n\beta)$

= $2\cos(m\alpha + n\beta)$

35) Solve the equation $z^3 + 27 = 0$

Answer:
$$z^{3} = -27 = (-1 \times 3)^{3} = -1 \times 33$$

 $z = (-1)^{\frac{1}{3}} \times 3^{3 \times \frac{1}{3}} = (-1)^{\frac{1}{3}} \times 3$
 $\therefore z = 3[\cos \pi + i \sin \pi]^{\frac{1}{3}}$
 $[\because \cos \pi = -1 \text{ and } \sin \pi = 0]$
 $= 3[\cos \frac{1}{3}(2k\pi + \pi)i \sin \frac{1}{3}(2k\pi + \pi)]$
 $k = 0, 1, 2$
When $k = 0,$
 $z = 3[\cos \frac{1}{3}(\pi)i \sin \frac{1}{3}(\pi)] = 3\cos \frac{\pi}{3}$
When $k = 1$
 $z = 3[\cos \frac{1}{3}(3\pi)i \sin \frac{1}{3}(3\pi)]$
 $= 3[\cos \pi + i \sin \pi] = 3(-1+0)$
When $k = 2$
 $z = 3[\cos \frac{1}{3}(5\pi)i \sin \frac{1}{3}(5\pi)] = 3[\cos \frac{\pi}{3}]$
Hence, the roots are $3 \operatorname{cis} \frac{\pi}{3}, -3, 3 \operatorname{c}$ is $5\frac{\pi}{3}$

36) If α , β , and γ are the roots of the equation $x^3 + px^2 + qx + r = 0$, find the value of $\sum \frac{1}{\beta \gamma}$ in terms of the coefficients.

Answer : Since α , β , and γ are the roots of the equation $x^{3+} px^{2+} qx + r = 0$, we have $\Sigma_1 \alpha + \beta + \gamma = -p$ and $\Sigma_3 \alpha\beta\gamma = -r$ $\Sigma \frac{1}{\beta\gamma} = \frac{1}{\beta\gamma} + \frac{1}{\gamma\alpha} + \frac{1}{\alpha\beta} = \frac{\alpha+\beta+\gamma}{\alpha\beta\gamma} = \frac{-p}{-r} = \frac{p}{r}$.

37) Find the value of the expression in terms of x, with the help of a reference triangle. $sin(cos^{-1}(1-x))$

Answer:
$$\sin(\cos^{-1}(1-x))$$

we know that $\cos^{-1}x = \sin^{-1}(\sqrt{1-x^2})$ if $0 \le x \le 1$
 $\therefore \cos^{-1}(1-x) = \sin^1\sqrt{1-(1-x)^2}$ $[\because 0 \le x \le 1]$
 $= \sin^{-1}(\sqrt{1-(1+x^2-2x)})$
 $= \sin^{-1}(\sqrt{1-(1-x^2+2x)}) = \sin^{-1}(\sqrt{2x-x^2})$
 $\therefore \sin(\cos^{-1}(1-x)) = \sin(\sin^{-1}(\sqrt{2x-x^2}))$
 $= \sqrt{2x-x^2}$

38) Simplify $sec^{-1}\left(sec\left(\frac{5\pi}{3}\right)\right)$

Answer: $\sec^{-1}\left(\sec\left(\frac{5\pi}{3}\right)\right)$ Note that $\frac{5\pi}{3}$ is not in $[0, \pi] \setminus \{\frac{\pi}{2}\}$, the principal range of $\sec^{-1} x$. we write $\frac{5\pi}{3} = 2\pi - \frac{\pi}{3}$. Now, $\sec\left(\frac{5\pi}{3}\right) = \sec\left(2\pi - \frac{\pi}{3}\right) = \sec\left(\frac{\pi}{3}\right) and \frac{\pi}{3} \in [0, \pi] \setminus \{\frac{\pi}{2}\}$ Hence, $\sec^{-1}\left(\sec\left(\frac{5\pi}{3}\right)\right) = \sec^{-1}\left(\sec\left(\frac{\pi}{3}\right)\right) = \frac{\pi}{3}$

39) The equation $y = \frac{1}{32}x^2$ models cross sections of parabolic mirrors that are used for solar energy. There is a heating tube located at the focus of each parabola; how high is this tube located above the vertex of the parabola?

Answer : Equation of the parabola is $y = \frac{1}{32}x^2$ That is $x^2 = 32y$; the vertex is (0, 0) = 4 (8)y

 $\Rightarrow a = 8$

So the heating tube needs to be placed at focus (0, a)

Hence the heating tube needs to be placed 8 units above the vertex of the parabola.

40) Find the length of the chord intercepted by the circle $x^2 + y^2 - 2x - y + 1 = 0$ and the line x - 2y = 0

Answer : To find the end points of the chord, solve the equations of the circle and the line.

Substitute x = 2y + 1 in the equation of the circle

$$(2y+1)^2 + y^2 - 2(2y+1) - y + 1 = 0$$

 $4y^2 + 4y + 1 + y^2 - 4y - 2 - y + 1 = 0$
 $5y^2 - y = 0$
 $\therefore y(5y-1) = 0$
y = 0 (or) $y = \frac{1}{5}$
 $\Rightarrow x = 1$ (or) $x = \frac{7}{5}$
The two end points are (1, 0) and $\frac{7}{5}, \frac{1}{5}$
Length of the chord $= \sqrt{(1 - \frac{7}{5}) + (0 - \frac{1}{5})^2}$
 $= \sqrt{\frac{4}{25} + \frac{1}{25}} = \frac{1}{\sqrt{5}}$ units

41) Find the equation of the plane passing through the intersection of the planes 2x + 3y - z + 7 = 0and and x + y - 2z + 5 = 0 and is perpendicular to the plane x + y - 3z - 5 = 0.

Answer : The equation of the plane passing through the intersection of the planes 2x + 3y-z + 7 = 0and x + y - 2z + 5 = 0 is $(2x + 3y - z + 7) + \lambda (x + y - 2z + 5) = 0$ or $(2 + \lambda)x + (3 + \lambda)y + (-1 - 2\lambda) z + (7 + 5\lambda) = 0$

since this plane is perpendicular to the given plane x+y-3z-5 = 0, the normals of these two planes are perpendicular to each other.

Therefore, we have $(1)(2 + \lambda) + (1)(3 + \lambda) + (-3)(-1 - 2\lambda)z = 0$

which implies that $\lambda = -1$.

Thus the required equation of the plane is

(2x + 3y - z + 7) - (x + y - 2z + 5) = 0 $\Rightarrow x + 2y + z + 2 = 0$

42) If $\vec{a}, \vec{b}, \vec{c}$ and $\vec{p}, \vec{q}, \vec{r}$ are any two systems of three vectors, and if $\vec{p} = x_1 \vec{a} + y_1 \vec{b} + z_1 \vec{c}$

$$ec{q} = x_2ec{a} + y_2ec{b} + z_2ec{c}, ext{ and}, ec{r} = x_3ec{a} + y_3ec{b} + z_3ec{c} ext{ then } [ec{p}, ec{q}, ec{r}] = egin{bmatrix} x_1 & y_1 & z_1 \ x_2 & y_2 & z_2 \ x_3 & y_3 & z_3 \end{bmatrix} [ec{a}, ec{b}, ec{c}]$$

Answer : If $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar and

 $egin{array}{ccc} x_1 & y_1 & z_1 \ x_2 & y_2 & z_2 \ x_3 & y_3 & z_3 \end{array}
onumber
ightarrow 0$

then the three vectors $\vec{p} = x_1\vec{a} + y_1\vec{b} + z_1\vec{c}$, $\vec{q} = x_2\vec{a} + y_2\vec{b} + z_2\vec{c}$, and $\vec{r} = x_3\vec{a} + y_3\vec{b} + z_3\vec{c}$ are also non-coplanar.

III ANSWER THE ALL QUESTION

7x 5 = 35

43) a) Find all the roots $(2-2i)^{\frac{1}{3}}$ and also find the product of its roots.

Answer: Let $2-2i = r(\cos\theta + i\sin\theta)$ $r = \sqrt{2^2 + (-2)^2} = \sqrt{4+4} = \sqrt{8} = 2\sqrt{2}$ The principal value $\alpha = \tan^{-1} \left| \frac{y}{x} \right| = \tan^{-1} \left| \frac{-z}{x} \right|$ $= \tan^{-1}(1) = \frac{\pi}{4}$ Since the complex number 2 - 2i lies in the quadrant $\theta = -\alpha = -\frac{\pi}{4}$: 2-2i = $2\sqrt{2} [cos(-\frac{\pi}{4}) + isin(\frac{\pi}{4})]^{\frac{1}{3}}$ $\dot{}$ $(2\sqrt{2})^{rac{1}{3}} \left[cos\left(-rac{\pi}{4}
ight) + isin\left(rac{\pi}{4}
ight)
ight]^{rac{1}{3}}$ $= 8^{\frac{1}{6}} \left[cos \frac{1}{3} \left(2k\pi - \frac{\pi}{4} \right) + isin \frac{1}{3} \left(2k\pi - \frac{\pi}{4} \right) \right]$ k = 0, 1, 2The roots are : When k = 0, $8^{\frac{1}{6}} cis(-\frac{\pi}{12})$ when k = 1, $8^{\frac{1}{6}} cis(\frac{7\pi}{12})$ when k = 2, $8^{\frac{1}{6}} cis(\frac{15\pi}{12})$ \therefore The product of the root $= 8^{\frac{1}{6}} cis \left(-\frac{\pi}{12} + \frac{7\pi}{12} + \frac{15\pi}{12} \right)$ = $8^{\frac{1}{6}} cis \left(\frac{21\pi}{12} \right) = 8^{\frac{1}{6}} cis \left(\frac{7\pi}{12} \right)$ $=8^{\frac{1}{6}}cis(2\pi-\frac{\pi}{4})=8^{\frac{1}{6}}cis(-\frac{\pi}{4})$ $=8^{\frac{1}{6}}\left[\cos\left(-\frac{\pi}{4}\right)+i\sin\left(-\frac{\pi}{4}\right)\right]$ $=8^{\frac{1}{6}}\left[\cos\left(\frac{\pi}{4}\right)+i\sin\left(\frac{\pi}{4}\right)\right]$ $=8^{\frac{1}{6}}\left[\frac{1}{\sqrt{2}}-\frac{i}{\sqrt{2}}\right]=2^{3\times\frac{1}{6}}\left(\frac{1-i}{\sqrt{2}}\right)=2^{1/2}\left(\frac{1-i}{\sqrt{2}}\right)$ = 1-i

(OR)

b) A straight line passes through the point (1, 2, -3) and parallel to $4\hat{i} + 5\hat{j} - 7\hat{k}$. Find (i) vector equation in parametric form

- (ii) vector equation in non-parametric form
- (iii) Cartesian equations of the straight line.

Answer : The required line passes through (1, 2, -3). So, the position vector of the point is $\hat{i} + 2\hat{j} - 3\hat{k}$.

Let $ec{a} = \hat{i} + 2\hat{j} - 3\hat{k}$ and $ec{b} = 4\hat{i} + 5\hat{j} - 7\hat{k}$. Then, we have

(i) vector equation of the required straight line in parametric form is $\vec{r} = \vec{a} + t\vec{b}$, $t \in \mathbb{R}$

Therefore, $ec{r}=(\hat{i}+2\hat{j}-3\hat{k})+t(4\hat{i}+5\hat{j}-7\hat{k})$, t \in R

(ii) vector equation of the required straight line in non-parametric form is $(\vec{r} - \vec{a}) \times \vec{b} = \vec{0}$ Therefore, $\vec{r} = (\hat{i} + 2\hat{j} - 3\hat{k}) + t(4\hat{i} + 5\hat{j} - 7\hat{k}) = \vec{0}$ (iii) Cartesian equations of the required line are $\frac{x-x_1}{b_1} = \frac{y-y_1}{b_2} = \frac{z-z_1}{b_2}$

Here, $(x_1, y_1, z_1) = (1, 2, -3)$ and direction ratios of the required line are proportional to 4, 5, -7. Therefore, Cartesian equations of the straight line are $\frac{x-1}{4} = \frac{y-2}{5} = \frac{z+3}{-7}$

44) a) Prove that $\tan^{-1} x + \tan^{-1} z = \tan^{-1} \left[\frac{x+y+z-xyz}{1-xy-yz-zx} \right]$

Answer: We know that
$$tan^{-1}x + tan^{-1}y = tan^{-1}\left(\frac{x+y}{1-xy}\right)$$

 $\therefore LHS = tan^{-1}(x) + tan^{-1}(y) + tan^{-1}(z)$
 $= tan^{-1}\left(\frac{x+y}{1-xy}\right) + tan^{-1}(z)$
 $= tan^{-1}\left(\frac{\frac{x+y}{1-xy}+z}{1-z\left(\frac{x+y}{1-xy}\right)}\right)$ by(1)
 $= tan^{-1}\left(\frac{\frac{x+y+z(1-xy)}{1-xy}}{\frac{1-xy}{1-xy-x}}\right)$
 $= tan^{-1}\left(\frac{x+y+z-xyz}{1-xy}\right)$
 $= tan^{-1}\left(\frac{x+y+z-xyz}{1-xy-yz-zx}\right)$
 $= tan^{-1}\left(\frac{x+y+z-xyz}{1-xy-yz-zx}\right) = RHS$
Hence proved.

(OR)

b) Find the acute angle between the following lines

 $2\mathbf{x} = 3\mathbf{y} = -\mathbf{z} \text{ and } 6\mathbf{x} = -\mathbf{y} = -4\mathbf{z}.$ **Answer :** $a_1 = \frac{1}{2}, a_2 = \frac{1}{6}, b_1 = \frac{1}{3}, b_2 = \frac{-1}{1}, c_1 = -1$ $c_2 = \frac{1}{-4}$ $a_1a_2 + b_1b_2 + c_1c_2 = \frac{1}{12} - \frac{1}{3} + \frac{1}{4} = \frac{1-4+3}{12} = 0$ $\cos\theta = 0$ $\theta = \frac{\pi}{2} \text{ or } 90^\circ$

45) a) Find the equations of tangent and normal to the parabola $x^2+6x+4y+5 = 0$ at (1, -3).

Answer : Equation of parabola is $x^2+6x+4y+5 = 0$. $x^{2}+6x+9-9+4y+5=0$ $(x + 3)^2 = -4(y-1) \dots (1)$ Let X = x+3, Y = y - 1Equation (1) takes the standard form $X^2 = -4Y$ Equation of tangent is $XX_1 = -2(Y + Y_1)$ At (1, -3) $X_1 = 1+3 = 4$; $y_1 = -3-1 = -4$ Therefore, the equation of tangent at (1,-3) is (x + 3)4 = -2(y-1-4)2x + 6 = -y + 5. 2x+y+1 = 0Slope of tangent at(1, -3) is -2, so slope of normal at (1, -3) is $\frac{1}{2}$ Therefore, the equation of normal at (1, -3) is given by $y + 3 = \frac{1}{2}(x-1)$ 2y + 6 = x - 1x-2y-7 = 0.

(OR)

b) Find the equation of the tangent at t = 2 to the parabola $y^2 = 8x$. (Hint: use parametric form)

Answer : Equation of the parabola is $y^2 = 8x$

 \therefore 4a = 8 \Rightarrow a = 2

Equation of tangent to the parabola in parametric form is $yt = x + at^2$

When t = 2, the equation of tangent is

- $\mathbf{y}(2) = \mathbf{x} + 2(2)^2 \Rightarrow 2\mathbf{y} = \mathbf{x} + \mathbf{8}$
- \Rightarrow x 2y + 8 = 0 is the required equation of tangent.
- 46) a) If the system of equations px + by + cz = 0, ax + qy + cz = 0, ax + by + rz = 0 has a nontrivial solution and $p \neq a$, $q \neq b$, $r \neq c$, prove that $\frac{p}{p-a} + \frac{q}{q-b} + \frac{r}{r-c} = 2$.

Answer : Assume that the system px + by + cz = 0, ax + qy + cz = 0, ax + by + rz = 0 has a non-trivial solution.

So, we have $\begin{vmatrix} p & b & c \\ a & q & c \\ a & b & r \end{vmatrix} = 0$, Applying $\mathbb{R} \to \mathbb{R} - \mathbb{R}$ and $\mathbb{R} \to \mathbb{R} - \mathbb{R}$ in the above equation, we get $\begin{vmatrix} p & b & c \\ a - p & q - b & c \\ a - p & b & r - c \end{vmatrix} = 0$. That is, $\begin{vmatrix} p & b & c \\ -(p-a) & q - b & c \\ -(p-a) & b & r - c \end{vmatrix} = 0$. Since $p \neq a, q \neq b, r \neq c$, we get $(p - a)(q - b)(r - c) \begin{vmatrix} \frac{p}{p-a} & \frac{b}{q-b} & \frac{c}{r-c} \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{vmatrix} = 0$. So, we have $\begin{vmatrix} \frac{p}{p-a} & \frac{b}{q-b} & \frac{c}{r-c} \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{vmatrix} = 0$. Expanding the determinant, we get $\frac{p}{p-a} + \frac{b}{q-b} + \frac{c}{r-c} = 0$. That is, $\frac{p}{p-a} + \frac{q-(q-b)}{q-b} + \frac{r-(r-c)}{r-c} = 0$ $\Rightarrow \frac{p}{p-a} + \frac{b}{q-b} + \frac{c}{r-c} = 2$.

(OR)

b) Determine the values of λ for which the following system of equations x + y + 3z = 0, $4x + 3y + \lambda z = 0$, 2x + y + 2z = 0 has

(i) a unique solution

(ii) a non-trivial solution

Answer : x + y + 3z = 0, $4x + 3y + \lambda z = 0$, 2x + y + 2z = 0

Reducing the augmented matrix to row - echelon form we get,

$[A \mid O] = \begin{bmatrix} 1 & 1 & 3 & 0 \end{bmatrix}$
$\begin{bmatrix} A \mid 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 3 & 0 \\ 4 & 3 & \lambda \mid 0 \\ 2 & 1 & 2 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 3 & 0 \end{bmatrix}$
$\begin{bmatrix} 2 & 1 & 2 & 0 \end{bmatrix}$
$\stackrel{R_1\leftrightarrow R_3}{\longrightarrow} egin{array}{ccccc} 0 & -1 & -4 & egin{array}{cccccc} -4 & egin{array}{cccccc} 0 & -1 & -4 & egin{array}{cccccccccccccccccccccccccccccccccccc$
$R_2 ightarrow R_2 - 2R_1 egin{bmatrix} 1 & 1 & 3 & 0 \ 0 & -1 & -4 & 0 \ \end{bmatrix}$
$\left[\begin{matrix} R_3 ightarrow R_3 - 4R_1 \end{matrix} \right] \left[\begin{matrix} 0 & 0 & \lambda - 8 & 0 \end{matrix} \right]$
$egin{array}{rll} \left[0 & -1 & \lambda - 2 & 0 ight] \ R_2 oreal R_2 oreal R_2 oreal R_1 \ R_3 oreal R_3 oreal A R_1 \end{array} \left[egin{array}{rll} 1 & 1 & 3 & 0 \ 0 & -1 & -4 & 0 \ 0 & 0 & \lambda - 8 & 0 \end{array} ight] \ R_3 oreal R_3 oreal R_3 oreal R_1 \ ectoplus \ R_3 oreal R_3 oreal R_1 \end{array} \left[egin{array}{rll} 1 & 1 & 3 & 0 \ 0 & -1 & -4 & 0 \ 0 & 0 & not & zero & 0 \end{array} ight] \end{array}$
$\begin{bmatrix} 0 & 0 & not & zero & 0 \end{bmatrix}$
Case (i) when $\lambda \neq 8$
$[A \mid 0] = \begin{bmatrix} 1 & 1 & 3 & 0 \end{bmatrix}$
$\begin{bmatrix} A \mid 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 3 & 0 \\ 0 & -1 & -4 \mid 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
Here $\rho(A) = 3$, $\rho([A 0] = 3$
$\therefore \rho(A) = \rho([A 0]) = 3 = $ the number of unknowns
\div The given system is consistent and has unique solution.
Case (ii) when $\lambda = 8$
Here $\rho(A) = 2$, $\rho([A 0] = 2$
∴ ρ (A) = ρ ([A 0]) =2< 3 the number of unknowns,

 \div The system is consistent and has non-trivial solutions.

47) a) Show that the equation $x^3 + qx + r = 0$ has two equal roots if $27r^2 + 4q^3 = 0$.

Answer: Let α, β, γ be the roots of the equation $f(x) = x^3 + qx + r = 0$ $\Sigma_1 = \alpha + \beta + \gamma = 0$ (1) $\sum_{2} = \alpha \beta + \beta \gamma + \gamma \alpha = +q$ (2) $\sum_{3} = lpha eta \gamma = -r$ (3) Given $\alpha = \beta$ (1) $\Rightarrow 2\alpha + \gamma = 0$ $\gamma = -2\alpha$ (2) $\Rightarrow a^2 + a\gamma + a\gamma = q$ $lpha^2+2a\gamma=q$ $a^2 + 2a(-2a) = q$ $a^2 - 4a^2 = q$ $-3a^{2} = q$ $a^2 = rac{-q}{3}$ (3) $\Rightarrow \alpha^2 \cdot \gamma = r$ $lpha^2 \cdot (-2a) = r$ $-2a^{3} = r$ Taking square on both sides, $4(a^2)^3 = r^2$ $(a^{-q})^3 = r^2$ $\frac{4(-q)^3}{27} = r^2$ $-4q^3 = 27r^2$ $27r^2 + 4q^3 = 0$

(OR)

b) Find the equation of the plane passing through the line of intersection of the planes x + 2y + 3z = 2 and x - y + z = 3 and at a distance $\frac{2}{\sqrt{3}}$ from the point (3, 1, -1)

Answer : Given equation of planes are x + 2y + 3z = 2 and x-y+z+11 = 3

The Cartesian equation of a plane which passes through the line of intersection of the planes is $(a_1x + b_1y + c_1z - d_1) + \lambda (a_2x + b_2y + c_2z - d_2) = 0$... The required equation of the plane is $(x+2y+3z-2)+\lambda\left(x+y+z+8
ight)=0$ $x\left(\lambda+1
ight)+y\left(2+\lambda
ight)+z\left(3+\lambda
ight)-2+8\lambda=0$ The distance from (3, 1, -1) to this plane is $\frac{2}{\sqrt{3}}$ $\therefore \frac{3(\lambda+1)+1(2+\lambda)-1(3+\lambda)-2+8\lambda}{\sqrt{(\lambda+1)^2+(2+\lambda)^2+(3+\lambda)^2}} = \frac{2}{\sqrt{3}}$ $\frac{3\lambda + \cancel{2} + \cancel{2} + 2\lambda - \cancel{2} - \lambda - \cancel{2} + 8\lambda}{\sqrt{\lambda^2 + 1 + 2\lambda + 4 + \lambda^2 + 4\lambda + 9 + \lambda^2 + 6\lambda}} = \frac{2}{\sqrt{3}}$ $\Rightarrow rac{12\lambda}{\sqrt{3\lambda^2+12\lambda+14}}=rac{2}{\sqrt{3}}$ Squaring on both sides $rac{\lambda^2}{3\lambda^2+4\lambda+14}=rac{1}{3}\ 3\lambda^2=3\lambda^2+4\lambda+14$ $4\lambda = -14$ $\lambda = \frac{-7}{2}$ Putting $\lambda = \frac{-7}{2}$ in (1) The required equation $(x+2y+3z-2)-rac{7}{2}(x-y+z-3)=0$ 2x + 4y + 6z - 4 - 7x + 7y - 7z + 21 = 0-5x + 11y - z + 17 = 05x - 11y + z - 17 = 0

48) a) If $z_1 = 2 + 5i$, $z_2 = -3 - 4i$, and $z_3 = 1 + i$, find the additive and multiplicate inverse of z_1 , z_2 and z_3

Answer : Given $z_1 = 2 + 5i$, $z_2 = -3 - 4i$ and $z_3 = 1 + i$

Additive inverse of z_1 is

 $-z_1 = -(2 + 5i)$ = -2 - 5i

Multiplicative inverse of z_1 is

 $\begin{aligned} \frac{1}{z_1} &= \frac{1}{2+5i} \times \frac{2-5i}{2-5i} \\ \text{[Multiply and divide by the conjugate of denominator]} \\ &= \frac{2-5i}{2^2 - (5i)^2} = \frac{2-5i}{4-25^2} = \frac{2-5i}{4+25} \\ \text{(z_1)}^{-1} &= \frac{1}{29} (2-5i) \quad [\because i^2 = -1] \end{aligned}$

Additive inverse of z_2 is

 $-z_2 = -(3 - 4i)$ = 3 + 4i

Multiplicative inverse of z_2 is

 $\frac{1}{z_2} = \frac{1}{-3-4i} \times \frac{-3+4i}{-3+4i}$ = $\frac{-3+4i}{(-3)^2 - (4i)^2}$ = $\frac{-3+4i}{9-16i^2} = \frac{-3+4i}{9+16}$ $(z_2)^{-1} = \frac{1}{25}(-3+4i)$

Additive inverse of z_3 is

 $-z_3 = -(1 + i)$ = -1- i

Multiplicative inverse of z_3 is

$$\begin{split} & \frac{1}{z_3} = \frac{1}{1+i} \times \frac{1-i}{1-i} = \frac{1-i}{1^2 - (i^2)} \\ & = \frac{1-i}{1+i} \\ & (\mathbf{z}_3)^{-1} = \frac{1}{2} \left(1 - \mathbf{i} \right) \end{split}$$

(OR)

b) If z_1 , z_2 , and z_3 are three complex numbers such that $|z_1| = 1$, $|z_2| = 2|z_3| = 3$ and $|z_1 + z_2 + z_3| = 1$, show that $|9z_1z_2 + 4z_1z_2 + z_2z_3| = 6$

Answer: Given
$$|z_1| = 1$$
, $|z_2| = 2$, $|z_3| = 3$, $|z_1 + z_2 + z_3| = 1$
 $|z_1|^2 = 1^2 \Rightarrow z_1 \overline{z_1} = 1 \Rightarrow z_1 = \frac{1}{z_1}$
 $|z_2|^2 = 4 \Rightarrow z_2 \overline{z_2} = 1 \Rightarrow z_2 = \frac{4}{z_2}$
 $|z_3|^2 = 9 \Rightarrow z_3 \overline{z_3} = 1 \Rightarrow z_3 = \frac{9}{z_3}$
 $\therefore \left|9, \frac{1}{z_1}, \frac{4}{z_2} + 4, \frac{1}{z_1}, \frac{9}{z_3} + \frac{4}{z_2}, \frac{9}{z_3}\right|$
 $\left|\frac{36}{\overline{z_1}\overline{z_2}} + \frac{36}{\overline{z_1}\overline{z_3}} + \frac{36}{\overline{z_2}\overline{z_3}}\right| = \left|36\left(\frac{\overline{z_3} + \overline{z_2} + \overline{z_1}}{\overline{z_1}\overline{z_2}\overline{z_3}}\right)\right|$
 $\left[\because |\overline{z_1} + \overline{z_2} + \overline{z_3}| = |\overline{z_1} + z_2 + \overline{z_3}|\right]$
 $= \frac{36|\overline{z_1 + z_2 + z_3}|}{|\overline{z_1}||\overline{z_2}||\overline{z_3}|} = 36\frac{|\overline{z_1 + z_2 + \overline{z_3}}|}{|\overline{z_1}||\overline{z_2}||\overline{z_3}|}$
 $\left[\because |\overline{z_1}| = |z_1|, |\overline{z_2}| = |z_21|, |\overline{z_3}| = |\overline{z_3}|\right]$
 $= \frac{36(1)}{1(2)(3)} = \frac{36}{6} = 6$
 $\therefore |9z_1 + z_2 + 4z_1z_3 + z_2z_3| = 6$

49) a) Solve the equations: $6x^4 - 35x^3 + 62x^2 - 35x + 6 = 0$ **Answer**: $6x^4 - 35x^3 + 62x^2 - 35x + 6 = 0$

This equation is type I even degree reciprocal equation.

(OR)

b) Find the vertex, focus, equation of directrix and length of the latus rectum of the following: $y^2-4y-8x+12 = 0$

Answer: $y^2 - 4y - 8x + 12 = 0$ $y^2 - 4y = 8x - 12$ Adding 4 both sides, we get, y - 4y + 4 = 8x - 12 + 4 = 8x - 8 $\Rightarrow (y - 2)^2 = 8(x - 1)$ This is a right open parabola and latus rectum is $4a = 8 \Rightarrow a = 2$. (a) Vertex is $(1, 2) \Rightarrow h = 1, k = 2$ (b) focus is (h + a, 0 + k) $\Rightarrow (1 + 2, 0 + 2)$ $\Rightarrow (3, 2)$ (c) Equation of directrix is x = h - a $\Rightarrow x = 1 - 2$ $\Rightarrow x = -1$ (d) Length of latus rectum is 4a = 8 units.

