	F	RAVI MATHS TUITION C	ENTER ,GKM COLONY, CH- 82. PH	1: 8056206308	
		QUAI	RTERLY EXAM MODEL PAPER 1		Date : 13-Aug-19
			12th Standard 2019 EM		
			Business Maths	Reg.No. :	
Tir	ne : 02:30:00 Hrs			<u> </u>	Total Marks : 90
					20 x 1 = 20
1)	If A=(1 2 3), then the rank	c of AA ^T is			
	(a) 0	(b) 2	(c) 3	(d) 1	
2)	if $T = \frac{A}{B} \begin{pmatrix} A & B \\ 0.4 & 0.6 \\ 0.2 & 0.8 \end{pmatrix}$ is	a transition probability	matrix, then at equilibrium A is eq	ual to	
	(a) <u>-</u>	(b) <u>5</u>	(c) $\frac{1}{6}$	(d) <u></u>	
3)	The rank of the matrix	$\begin{pmatrix} & \\ 1 & 4 & 9 \end{pmatrix}$ is			
	(a) 0	(b) 1	(c) 2	(d) 3	
4)	If $A = \begin{pmatrix} \\ \\ 3 \end{pmatrix}$ then the rar	hk of AA^{T} is			
	(a) 0	(b) 1	(c) 2	(d) 3	
5)	$\int_{x^3} dx$ is				
	(a) $_{x^2}+c$	(b) $rac{1}{2x^2}+c$	(c) $_{3x^2}+c$	(d) $_{x^2}+c$	
6)	$\int \frac{1}{2\pi i m x} dx$ is				
	(a) $\sin x + c$	(b) sin x + c	(c) cos x + c	(d) $cos x + c$	
7)	∫ dx	2		2	
	(a) $-\cos 2x + c$	(b) -cos2x+c	(c) — , cos2x c	(d) -4cos2x +	с
8)	$\int dx x > 0$ is	. ,	4	()	
-,	(a) $(\log x)^2 + c$	(b) - (lo	(c) + (c)	: (d) —	+c
9)	$\frac{\alpha}{2}$	$\frac{2}{2}$	imits 1 and 2 is	x^2	
<i>J</i>)	(a) log2 sq upits	$y = \frac{1}{x}$ between the t	$\frac{(c)}{c} \log^2 c q \text{ units}$	(d) log 4 sq u	aite
10)	(a) toge squarts	(b) togs squarts	(c) logs squarks	(u) 10g + 3q.u	
10,	(2) 10.10	(b) 1 o 10	$-e^{10}$, then revenue is	(d) o 10 1	10
	(a) -100^{-10}	(b) $1 - e^{10}$	(c) $10(1-e^{10})$	(u) $e^{10} + $	10
11)	If MR and MC denotes th (a) $P = \int (MR - MC) dx + k$	e marginal revenue and (b) P = ∫(MR +	d marginal cost functions, then the MC) dx + k (c) $P = \int (MR)(MC)$	profit functions is $dx + k$ (d) $P = \int$	(R –C)dx + k
12)	The marginal revenue ar then the profit function i	nd marginal cost functions	ons of a company are MR = 30 – 6x a	and MC = $-24 + 3x$ where	e x is the product,
	(a) $9x^2 + 54x$	(b) $9x^2 - 54x$	(c) 54x - $\frac{9x^2}{2}$	(d) 54x - $\frac{9x^2}{2}$ + k	
13)	⁾ The degree of the differe	ntial equation $rac{d \ y}{dx^4} - \Big($	$\left(rac{d}{dx^2} ight)^4+rac{d}{dx}=3$		
	(a) 1	(b) 2	(c) 3	(d) 4	
14)	The order and degree of	the differential equatic	on $\sqrt{rac{d\ y}{dx^2}}=-rac{dx}{dx}+5$ are respect	tively	
	(a) 2 and 3	(b) 3 and 2	(c) 2 and 1	(d) 2 and 2	
15)	⁾ The differential equatior	$\left(rac{dy}{dy} ight)^{3}+2y^{\overline{2}}$ = x is			

(a) of order 2 and degree 1 (b) of order 1 and degree 3 (c) of order 1 and degree 6 (d) of order 1 and degree 2

16) The integrating	factor of the differential equation	$rac{dx}{dy} + Px = Q$		
(a) e ^{∫Pdx}	(b) e ^{∫Pdx}	(c) ∫Pdy	(d) e ^{∫Pdy}	
17) $\Delta^2 y_0 =$				
(a) $y_2 - 2y_1 + y_0$	(b) $y_2 + 2y_1 - y_0$	(c) $y_2 + 2y_1 + y_0$	(d) $y_2 + y_1 + 2y_0$	
18) ∆f(x) =				
(a) f(x+ h)	(b) $f(x) - f(x+h)$	(c) $f(x + h) - f(x)$	(d) $f(x) - f(x-h)$	
19) E≡				
(a) $1 + \Delta$	(b) 1-Δ	(c) 1+∇	(d) 1-∇	
20) If c is a constant	t then ∆c =			
(a) c	(b) Δ	(c) Δ^2	(d) 0	
				7 x 2 = 14
21)	$\begin{pmatrix} 4 & 5 & 2 & 2 \end{pmatrix}$			

Find the rank of the matrix A =
$$\begin{pmatrix} 2 & 2 & 2 \\ 3 & 2 & 1 & 6 \\ 4 & 4 & 8 & 0 \end{pmatrix}$$

22) Find k if the equations x+y+z=1, 3x-y-z=4, x+5y+5z=k are inconsistent.

23) Integrate the following with respect to x.

$$\left(\sqrt{2x}-rac{1}{\sqrt{2x}}
ight)^2$$

- 24) Integrate the following with respect to x. $x^{8}(1+x^{9})^{5}$
- 25) Find the area bounded by the lines y 2x 4 = 0, y = 1, y = 3 and the y-axis
- 26) The marginal cost function of a product is given by $\frac{dC}{dx} = 100 10x + 0.1x^2$ where x is the output. Obtain the total and the average cost function of the firm under the assumption, that its fixed cost is Rs. 500.

27) Solve:
$$y(1 - x) - x \frac{dy}{dx} = 0$$

- 28) Solve the following differential equations $(3D^2 + D 14)y=13e^{2x}$
- 29) If h = 1 then prove that $(E^{-1}\Delta)x^3 = 3x^2 3x + 1$.
- 30) Evaluate $\Delta\left[\frac{1}{(x+1)(x+2)}\right]$ by taking '1' as the interval of differencing
- 31) Show that the equations x+y+z=6,x+2y+3z=14,x+4y+7z =30 are consistent and solve them.
- 32) Consider the matrix of transition probabilities of a product available in the market

in two brands A and B.

$${}^{A}_{B} \left(egin{array}{ccc} {}^{A} & {}^{B} \\ 0.9 & 0.1 \\ 0.3 & 0.7 \end{array}
ight)$$

Determine the market share of each brand in equilibrium position.

33) Evaluate
$$\int rac{1}{\sqrt{x+2}-\sqrt{x-2}}dx$$

34) Evaluate $\int \sqrt{x^2-4x+3}\,\,\mathrm{dx}$

35) Evaluate
$$\int_0^{\frac{\pi}{2}} \frac{sinx}{sinx+cosx} dx$$

- 36) Find the area of the region bounded by the parabola $y=4-x^2\;$, x –axis and the lines x = 0, x = 2
- 37) Sketch the graph y = |x+3| and evaluate $\int_{-6}^{0} |x+3| \, \mathrm{dx}$.
- 38) Find the particular solution of the differential equation $x^2 dy + y(x + y)dx = 0$ given that x=1, y=1
- 39) Solve $\frac{d^2y}{dt^2} \frac{3dy}{dt} + 2x = 0$ given that when t = 0, x = 0 and $\frac{dx}{dt} = 1$

7 x 3 = 21

- 40) Given U = 1, U = 11, U = 21, U = 28 and U = 29 find Δ U₀
- 41) Solve by Cramer's rule x+y+z=4, 2x-y+3z=1, 3x+2y-z=1
- 42) A new transit system has just gone into operation in a city. Of those who use the transit system this year, 10% will switch over to using their own car next year and 90% will continue to use the transit system. Of those who use their cars this year, 80% will continue to use their cars next year and 20% will switch over to the transit system. Suppose the population of the city remains constant and that 50% of the commuters use the transit system and 50% of the commuters use their own car this year,

 $7 \times 5 = 35$

- (i) What percent of commuters will be using the transit system after one year?
- (ii) What percent of commuters will be using the transit system in the long run?
- 43) Evaluate $\int rac{3x^2+6x+1}{(x+3)(x^2+1)}dx$
- (44) Evaluate $\int_1^4 f(x) dx$, where $\left\{egin{array}{c} 7x+3, if 1\leq x\leq 3\ 8x, if 3\leq x\leq 4\end{array}
 ight.$
- 45) Using integrals as limit of sums, evaluate $\int_2^4{(2x-1)dx}$
- 46) A firm has the marginal revenue function given by MR = $\frac{a}{(x+b)^2}$ c where x is the output and a, b, c are constants. Show that the demand function is given by $x = \frac{a}{b(x+c)} b$.
- 47) The demand and supply functions under pure competition are $P_d = 16 x^2$ and $p_s = 2x^2 + 4$. Find the consumer's surplus and producer's surplus at the market equilibrium price.
- 48) Solve $3e^{x} \tan y dx + (1 + e^{x}) \sec^{2} y dy = 0$ given $y(0) = \frac{\pi}{4}$
- 49) Solve $\cos^2 x \frac{dy}{dx} + y = \tan x$
- 50) Solve: $(D^2 + 14D + 49)y = e^{-7x} + 4$.
- ⁵¹⁾ Suppose that the quantity needed $Q_d = 42 4p 4 \frac{dp}{dt} + \frac{d^2p}{dt^2}$ and quantity supplied $Q_s = -6 + 8p$ where p is the price. Find the s equilibrium price for market clearance.
- 52) The population of a certain town is as follows

Year:x	1941	1951	1961	1971	1981	1991
Population	20	24	າດ	26	16	51
in lakhs:y	20	24	29	50	40	51

Using appropriate interpolation formula, estimate the population during the period 1946.

53) Using Lagrange's interpolation formula find y(10) from the following table:

х	5	6	9	11
y	12	13	14	16

54) From the following data, calculate the value of $e^{1.75}$

х	1.7	1.8	1.9	2.0	2.1
e×	5.474	6.050	6.686	7.386	8.166

RAVI MATHS TUITION CENTER ,GKM COLONY, CH- 82. PH: 8056206308

		QUARTERLY E	EXAM MODEL PAPER 2		Date : 13-Aug-19
		12th Standard 2019 EM			
		Bus	iness Maths	Reg.No. :	
Tin	ne : 02:30:00 Hrs				Total Marks : 90
					20 x 1 = 20
1)	If $\rho(A)$ =r then which of the	ne following is correct?			
	(a) all the minors of order r	(b) A has at least one minor (of (c) A has at least on	ne (r+1) order (d) all (r+1) and higher order
	which does not vanish	order r which does not vanish	n minor which vanish	es minors sho	uld not vanish
2)	(1)				
,	IfA = 2 then the rank	of AA ^T is			
	$\left(\begin{array}{c} 3 \end{array} \right)$				
	(a) 0	(b) 1	(c) 2	(d) 3	
3)	Cramer's rule is applicable	only to get an unique solutio	n when		
	(a) $ riangle_z eq 0$	(b) $ riangle_x eq 0$	(c) $ riangle_{ eq} 0$	(d) $ riangle_y eq 0$	
4)	The rank of an n x n matrix	ceach of whose elements is 2	is	, , , , , , , , , , , , , , , , , , ,	
	(a) 1	(b) 2	(c) n	(d) n ²	
5)	$\int \frac{e^x}{e^x} dx$				
- /	$\int \frac{e^x + 1}{e^x + 1} \frac{dx}{dx}$	(b) $\log \left \frac{e^x + 1}{e^x} \right + c$	(c) $\log e^x \perp c$	(d) $\log e^x \perp 1$	$\perp c$
\sim	(a) $\log \left \frac{e^x + 1}{e^x + 1} \right + c$	(b) $\log \left \frac{-e^x}{e^x} \right + c$	(c) $\log c + c$	(d) $\log c + 1$	
6)	$\int \frac{2\pi}{4+x^4} dx$ is	1	1		
	(a) $\log 4 + x^4 + c$	(b) $\frac{1}{2}log 4+x^4 +c$	(c) $\frac{1}{4} log 4 + x^4 $	+c (d) log	$\left rac{2x^3}{4+x^4} ight + c$
7)	$\int_{2}^{4} \frac{dx}{x}$ is				
	(a) log 4	(b) 0 (c) log 2	(d) log 8	
8)	$\int 3^{x+2} dx = $	+c			
	(a) $\frac{3^x}{\log^3}$	(b) $\frac{9(3^x)}{1}$	(c) $\frac{3.3^x}{\log 3}$	(d) $\frac{3^x}{0 \log^3}$	
9)	If MP and MC denotes the	logs marginal royonyo and margin	al cost functions than th	o profit functions is	
5)	(a) $P = \int (MR - MC) dx + k$	(b) $P = \int (MR + MC) dx +$	k (c) $P = \int (MR)/M$	$\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}$	$\int (B - C) dx + k$
10)		marginal cost functions of a	$C = \frac{1}{2} \sum_{i=1}^{n} $	$K = -24 \pm 2x$ where	y is the product
10)	then the profit function is		company are MR – 30 – 0	x = -24 + 5x with	ie x is the product,
	(a) $\Theta x^2 + 54x$	(b) $9x^2 - 54x$	(c) $E4x \frac{9x^2}{x^2}$	(d) $F4x = \frac{9x^2}{2} + 1$	
		(0) 5% = 54%	(c) $54x - \frac{1}{2}$	(u) $54x - \frac{1}{2} + k$	
11)	The given demand and su	pply function are given byD(x)	= 20 - 5x and $S(x) = 4x + 3$	8 if they are under perfe	ect competition
	then the equilibrium dema	and is	40	(n. 41	
	(a) 40	(b) $\frac{\pi}{2}$	(c) $\frac{10}{3}$	(d) $\frac{1}{5}$	
12)	The profit of a function p(>	<) is maximum when			
	(a) $MC - MR = 0$	(b) MC = 0	(c) MR = 0	(d) $MC + MR = 0$	
13)	If $y=cx + c - c^3$ then its diffe	rential equation is		2	-3
	(a) $y = \frac{dy}{dx} + \frac{dy}{dx} - \left(\frac{dy}{dx}\right)^2$	(b) $y = \left(\frac{dy}{dx}\right)^3 = x\frac{dy}{dx}$	$\frac{dy}{dx} - \frac{dy}{dx}$ (C) $\frac{dy}{dx} +$	$-y=-rac{dy}{dx}^{-3}-xrac{dy}{dx}$	(d) $rac{d^3y}{dx^3}=0$
14)	The complementary funct	ion of $(D^2 + 4)y = e^{2x}$ is			
,	(a) $(Ax + B)e^{2x}$	(b) $(Ax + B)e^{-2x}$ (c)	:) A cos 2x + B sin 2x	(d) Ae ^{-2x}	+ Be ^{2x}
15)	If $\sec^2 x$ is an integrating factor	actor of the differential equation	on $\frac{dy}{dy}$ + Py O then P =	(-)	
- /	(a) 2 tan x	(b) sec x	dx (c) $\cos^2 x$	(d) tan ² v	
16)	The integrating factor of y	$\frac{dy}{dy} = y = y^2 i s$			
±0)	$(a) = \frac{-1}{2}$	$dx \qquad y = x 13$	(c) logy	/۱- /	v
	(a) x	(D) _x	(c) log x	(d)	^

>					
17)	E f (x)=				
	(a) f(x- h)	(b) f(x)	(c) f(x+ h)	(d) f(x+2h)	
18)	∇ =				
	(a) 1+E	(b) 1-E	(c) 1- E ⁻¹	(d) 1+ E ⁻¹	
19)	Lagrange's interpolation f	ormula can be used f	or		
	(a) equal intervals only	(b) unequal interva	ls only (c) both equal and u	unequal intervals	(d) none of these.
20)	If $f(x)=x^2 + 2x + 2$ and the	interval of differencin	ig is unity then $\Delta f(x)$		
	(a) 2x-3	(b) 2x +3	(c) x + 3	(d) x-3	3
					7 x 2 = 14
21)	Solve the following equat	ion by using Cramer's	s rule		
	5x + 3y = 17; 3x + 7y = 31				
22)	For what value of x, the m	atrix			
	1 -2 3				
	$A = \begin{vmatrix} 1 & 2 & 1 \end{vmatrix}$ is s	ingular?			
	$\begin{vmatrix} x & 2 & -3 \end{vmatrix}$				
23)	If $f'(x) = 8x^3 - 2x$ and $f(2) = 8x^3 - 2x$	= 8, then find f (x)			
24)	Integrate the following wi	th rexpect to x			
	$\frac{a^x - e^{x \log b}}{x \log b^x}$				
25)	Evaluate $\int \frac{2^x + 3^x}{2^x + 3^x} dx$				
26)	The east of every here left 5^x		The encycling cost you have in		
20)	The cost of over haut of an	i engine is ks. 10,000	The operating cost per nour is a	at the rate of 2x – 240 Wi	nere the engine has
<u>مح</u> ۱	run x km. Find out the tot	al cost if the engine ru	un for 300 hours after overhaul.		
27)	The demand function for	a commodity is $p = \frac{3}{x}$	$\frac{1}{1+4}$. Find the consumer's surplu	us when the prevailing m	narket price is Rs. 6.
28)	Solve: $cosx(1 + cos y)dx - $	sin y(1 + sin x)dy = 0			
29)	Solve the following:				
	$rac{dy}{dx} - rac{y}{x} = x$				
30)	Find the missing entry in t	he following table			
	x 0123 4				
	y _x 139-81				
					7 x 3 = 21
31)	Akash bats according to the	ne following traits. If I	ne makes a hit (S), there is a 259	%	
	chance that he will make	a hit his next time at l	bat. If he fails to hit (F), there is	a 35%	
	chance that he will make	a hit his next time at l	bat. Find the transition probabi	ility matrix	
	for the data and determin	e Akash's long- range	batting average.		
32)	Show that the equations	x - 3v + 4z = 3 2x - 5v + 10 + 10 + 10 + 10 + 10 + 10 + 10 + 1	7z = 6.3x - 8y + 11z = 1 are inco	onsistent	
- =/					

33) Evaluate
$$\int rac{x+2}{\sqrt{2x+3}} dx$$

- 34) Evaluate $\int x^3 e^x dx$
- 35) Evaluate $\int \frac{dx}{\sqrt{x^2 3x + 2}}$
- 36) Find the area bounded by y = x between the lines x = -1 and x = 2 with x -axis.
- 37) Using integration find the area of the region bounded between the line x = 4 and the parabola $y^2 = 16x$.
- 38) The Marginal revenue for a commodity is $\mathsf{MR}=rac{e^x}{100}+x+x^2$, find the revenue function.
- 39) Solve : $(D^2-4D-1)y = e^{-3x}$
- 40) Evaluate $\Delta^2\left(rac{1}{x}
 ight)\,$ by taking '1' as the interval of differencing.

41) An automobile company uses three types of Steel S, S and S for providing three different types of Cars C, C and C. Steel requirement R (in tonnes) for each type of car and total available steel of all the three types are summarized in the following table.

Turner of Stool	Types of	Car		Total Steel
Types of Steel	C ₁	C ₂	C ₃	available
S ₁	3	2	1	28
S ₂	1	1	2	13
S ₃	2	2	2	14

Determine the number of Cars of each type which can be produced by Cramer's rule.

- 42) For what values of k, the system of equations kx+y+z = 1, x+ky+z= 1, x+y+kz= 1 have
 - (I) Unique solution
 - (ii) More than one solution

(iii) no solution

43) Evaluate
$$\int \frac{3x^2+6x+1}{(x+3)(x^2+1)} dx$$
44) Evaluate
$$\int \left[\frac{1}{\log x} - \frac{1}{(\log x)^2}\right] dx$$
45)

-0.3t

-1.5

-1.2

- 46) The marginal cost and marginal revenue with respect to commodity of a firm are given by C'(x) = 8 + 6x and R'(x) = 24. Find the total Profit given that the total cost at zero output is zero.
- 47) The demand and supply curves are given by $P_d = \frac{16}{x+4}$ and $P_s = \frac{x}{2}$. Find the Consumer's surplus and producer's surplus at the market equilibrium price.
- 48) The elasticity of demand with respect to price P for a commodity is $\frac{x-5}{x}$, x > 5, When the demand is x. Find demand function if the price is 2 when the demand is 7. Also, find the revenue function.
- 49) Solve: $(x^2+x+1)dx+(y^2-y+3)dy = 0$
- 50) Solve : x y $\frac{dx}{dy} = a \left(x^2 + \frac{dx}{dy} \right)$
- 51) Solve: $x^2 \frac{dy}{dx} = y^2 + 2xy$ given that y =1, when x=1
- 52) From the following table find the number of students who obtained marks less than 45.

Marka	30-	40-	50-	60-	70-
Marks	40	50	60	70	80
No. of	21	40	- 1	25	21
Students	31	42	51	35	31

53) The following data are taken from the steam table

Tempreture C ⁰	140	150	160	170	180
Pressure kg flcm ²	3.685	4.854	6.302	8.076	10.225

Find the pressure at temperature $t = 175^{\circ}$

54) Estimate the production for 1962 and 1965 from the following data

year	1961	1962	1963	1964	1965	1966	1967
Production in tonnes	200	_	260	306	_	290	430

	RAV	I MATHS TUITION (GKM CC, GKM CC	LONY, CH- 82.	PH: 805620630	8				
	QUARTERLY EXAM MODEL PAPER						D	ate : 1	3-Aug-1	19
			12th Standard 2	2019 EM						
			Business Ma	Reg.No.	:					
Tin	ne : 02:30:00 Hrs					·	ר '	otal N	/arks:S) 0
								2	0 x 1 = 2	20
1)	Which of the following is no	t an elementary tra	nsformation?							
	(a) $R_i \leftrightarrow R_j$ (b) R	$_i ightarrow 2R_i + 2c_j$	(c) R_i -	$ ightarrow 2R_i - 4R_i$	(d)	i	C_i 50	\mathcal{I}_{j}		
2)	if $ ho(A) eq ho(A,B), ext{ then tl}$	he system is								
	(a) Consistent and has infinit	ely many solutions	(b) Consistent	and has a unique	e solution (c)	incon	sistent	(d) co	nsistent	t
3)	In a transition probability m	natrix, all the entries	are greater than	or equal to						
	(a) 2	(b) 1	(c) 0	(d)	3				
4)	$ A_{n imes n} $ =3 $ adjA $ =243 the	n the value n is								
	(a) 4	(b) 5	(c) 6	(d)	7				
5)	The value of $\int_2^3 f(5-x)dx$	$x - \int_2^3 f(x) dx$ is								
	(a) 1	(b) 0	(c)	-1	(0	d) 5				
6)	$\int_{0}^{4}\left(\sqrt{x}+rac{1}{\sqrt{x}} ight) dx$ is									
	(a) $\frac{20}{3}$	(b) $\frac{21}{3}$		(c) $\frac{28}{3}$		(d) $\frac{1}{3}$				
7)	$\int_{0}^{rac{\pi}{3}}tanxdx$ is	-		-		Ĩ				
	(a) log 2	(b) 0	(c) $\log \sqrt{2}$		(d) 2 log	g 2				
8)	$\Gamma\left(\frac{3}{2}\right)$									
	(a) $\sqrt{\pi}$	(b) $\frac{\sqrt{\pi}}{2}$	(0	c) $2\sqrt{\pi}$		(d	$) \frac{3}{2}$			
9)	$\int_{4}^{9} \frac{1}{\sqrt{2}} dx =$	2					-			
	(a) 0	(b) 1	(c) 2	(d)	4				
10)	If the marginal revenue of a	firm is constant, th	en the demand fu	unction is						
	(a) MR	(b) MC	(c)	C(x)		(d) AC				
11)	Area bounded by $y = e^x$ betw	veen the limits 0 to	1 is							
	(a) (e−1) sq.units	(b) (e +1) sq.units	(c) (1	$-\frac{1}{a}$) sq.units	(d)	$\frac{1}{a}$	sq.uni	ts		
12)	Area bounded by $v = x $ bet	ween the limits 0 a	nd 2 is	.,		C				
	(a) 1sq.units	(b) 3 sq.units	(c)	2 sq.units	(d)	4 sq.u	inits			
13)	The area above the supply of	rurve n = g(x) and be	olow the line n =F	, Pais		•				
,	(a) Producer's Surplus	(b) Consum	er's Surplus	(c) \int_0^p	$^{0}q(x)dx$	(d)	$\int_0^{x0} q(x)$	(x) dx		
14)	Profit function is maximum	when $\frac{dp}{dt}$ =0 and $\frac{d}{dt}$	² <u>p</u> is	. , 50	5()		50 50	,		
	(a) positive	(b) negative	r ² –	(c) 0	(d) maximı	ım				
15)	2	2x		(-) -	(2)					
10)	$\frac{x}{2}$ 2x	2x	$\frac{x^2}{2}$	2x		2x				
16)	The general solution of the	differential equatio	$n \frac{dy}{dt} = \cos x is$							
	(a) $y = \sin x + 1$ (b) $y = \sin x + 1$	- 2 (c) $y = \cos x + c$	c is an arbitrary c	onstant (o	d) y = sin x + c, c	is an ai	bitrary o	onsta	nt	
17)	The order and degree of the	e differential equation	$\sin\left(rac{dy}{dx} ight)^2 - 3rac{d^3}{dx}$	$\frac{y}{dx} + \frac{dy}{dx} = x + \log x$	are					
	(a) 1,3	(b) 3,1	(c) 2,3	(d) 3,2				
18)	Lagrange's interpolation for	rmula can be used f	or							
	(a) equal intervals only	(b) unequal interval	sonly (c) b	oth equal and un	equal intervals		(d) noi	ne of t	hese.	
10										

19) If $f(x) = x^2 + 2x + 2$ and the interval of differencing is unity then Af(x)

(a) 2x-3 (b) 2x+3 (c) x+3 (d) x-3	
-----------------------------------	--

20) Newton's backward interpolation formula is used when the value of y is required at the _..... of the table.

(a) beginning (b) end (c) left (d) right

7 x 2 = 14

 $7 \times 3 = 21$

- 21) A commodity was produced by using 3 units of labour and 2 units of capital, the total cost is Rs 62. If the commodity had been produced by using 4 units of labour and one unit of capital, the cost is Rs 56. What is the cost per unit of labour and capital? (Use determinant method).
- 22) Two types of soaps A and B are in the market. Their present market shares are 15% for A and 85% for B. Of those who bought A the previous year, 65% continue to buy it again while 35% switch over to B. Of those who bought B the previous year, 55% buy it again and 45% switch over to A. Find their market shares after one year and when is the equilibrium reached?
- 23) Integrate the following with respect to x.

$$\frac{x^4 - x^2 + 2}{x - 1}$$

- 24) Integrate the following with respect to x. $\frac{e^{3logx}}{x^4+1}$
- 25) Evaluate the following:

$$\int_{-1}^1 f(x) dx \,$$
 where f(x) = $egin{cases} x, & x & \geq & 0 \ -x, \, x & < & 0 \ \end{pmatrix}$

- 26) The marginal cost of production of a firm is given by C'(x) = 5 + 0.13x, the marginal revenue is given by R'(x) = 18 and the fixed cost is Rs. 120. Find the profit function.
- 27) The marginal cost function is $MC = \frac{100}{x}$. Find the cost function C(x)if C(16)=100.
- 28) Find the differential equation of all circles passing through the origin and having their centers on the y axis.
- 29) Solve the following:

$$x \frac{dy}{dx} + 2y = x^4$$

30) Find the order and degree of the following differential equations.

$$(2 - y'')^2 = y''^2 + 2y'$$

- 31) Show that the equations x+y+z=6,x+2y+3z=14,x+4y+7z =30 are consistent and solve them.
- 32) Find the rank of the matrix

$$A = \begin{pmatrix} 2 & 4 & 5 \\ 4 & 8 & 10 \\ -6 & -12 & -15 \end{pmatrix}$$

33) Evaluate
$$\int \frac{ax^2 + bx + v}{\sqrt{x}} dx$$

34) Evaluate $\int_{-\infty}^{5} \frac{\sqrt{x}}{\sqrt{x}} dx$

35) Evaluate
$$\int e^{x} \left(\frac{1 + sinxcosx}{cos^{2}x} \right) dx$$

- 36) The demand function of a commodity is $y = 36 x^2$. Find the consumer's surplus for $y_0 = 11$
- 37) Find the differential equation corresponding to $y=ae^{4x}+be^{-x}$ where a, b are arbitrary constants.
- 38) Solve: $(3D2 + D 14)y = 4 13e^{\frac{-7}{3}x}$
- ³⁹⁾ Suppose that the quantity demanded $Q_d = 29 2p 5\frac{dp}{dt} + \frac{d^2p}{dt^2}$ and quantity supplied Q_s= 5 + 4p where p is the price. Find the equilibrium price for market clearance.

40) Given $U_0 = 1$, $U_1 = 11$, $U_2 = 21$, $U_3 = 28$ and $U_4 = 29$ find $\Delta^2 U_0$

- 41) The price of 3 Business Mathematics books, 2 Accountancy books and one Commerce book is Rs840. The price of 2 Business Mathematics books, one Accountancy book and one Commerce book is Rs 570. The price of one Business Mathematics book, one Accountancy book and 2 Commerce books is Rs 630. Find the cost of each book by using Cramer's rule.
- 42) A new transit system has just gone into operation in a city. Of those who use the transit system this year, 10% will switch over to using their own car next year and 90% will continue to use the transit system. Of those who use their cars this year, 80% will continue to use their cars next year and 20% will switch over to the transit system. Suppose the population of the city remains constant and that 50% of the commuters use the transit system and 50% of the commuters use their own car this year,
 - (i) What percent of commuters will be using the transit system after one year?
 - (ii) What percent of commuters will be using the transit system in the long run?

(i) Finally for the following $\begin{array}{l} (i) \int_{-2}^{1} f(x) dx \\ (ii) \int_{-2}^{1} f(x) dx \\ (iii) \int_{2}^{3} f(x) dx \\ (iv) \int_{-2}^{1.5} f(x) dx \\ (iv) \int_{1}^{3} f(x) dx \end{array}$

45) The elasticity of demand with respect to price p for a commodity is $\eta_d = \frac{p+2p^2}{100-p-p^2}$. Find demand function where price is Rs. 5 and the demand is 70.

46) Solve $\frac{dy}{dx}$ -3ycotx=sin2x given that y = 2 when x = $\frac{\pi}{2}$

47) Using Newton's formula for interpolation estimate the population for the year 1905

from the table:

Year	1891	1901	1911	1921	1931
Population	98.752	1,32,285	1,68,076	1,95,670	2,46,050

RAVI MATHS TUITION CENTER , GKM COLONY, CH- 82. PH: 8056206308 **QUARTERLY EXAM MODEL PAPER 4** Date: 13-Aug-19 12th Standard 2019 EM Reg.No.: **Business Maths** Time: 02:30:00 Hrs Total Marks: 90 20 x 1 = 20 1) If $\rho(A) = \rho(A, B)$ = the number of unknowns, then the system is (a) Consistent and has infinitely many solutions (b) Consistent and has a unique solution (c) inconsistent (d) consistent 2) In a transition probability matrix, all the entries are greater than or equal to (d) 3 (a) 2 (b) 1 (c) 0 3) If $\begin{vmatrix} 2x & 5 \\ 8 & x \end{vmatrix} = \begin{vmatrix} 6 & -2 \\ 7 & 3 \end{vmatrix}$ then x = (b) ± 3 (a) 3 (c) ± 6 (d) 6 4) $\int \frac{dx}{\sqrt{r^2-36}}$ is (a) $\sqrt{x^2 - 36} + c$ (b) $\log|x + \sqrt{x^2 - 36}| + c$ (c) $\log|x - \sqrt{x^2 - 36}| + c$ (d) $\log|x^2 + \sqrt{x^2 - 36}| + c$ 5) $\int_0^1{(2x+1)dx}$ is (c) 3 (d) 4 6) $\int \left(\frac{x}{m} + \frac{m}{x}\right) dx =$ _____+c (a) $\frac{x^2}{2m} + m \log |x|$ (b) $\frac{x}{m^2} + m \log |x|$ (c) $-rac{1}{mx^2}+m\log|x|$ (d) $\frac{1}{m} - \frac{m}{r^2}$ 7) $\int_{1}^{e} logx \, dx = _\dots + c$ (a) 1 (b) e-1 (d) 0 (c) e+1 8) The profit of a function p(x) is maximum when (a) MC - MR = 0(b) MC = 0(c) MR = 0(d) MC + MR = 09) The producer's surplus when the supply function for a commodity is P = 3 + x and $x_0 = 3$ is (b) $\frac{9}{2}$ (c) $\frac{3}{2}$ (a) $\frac{5}{2}$ (d) $\frac{7}{2}$ 10) The Producer's surplus for the supply function P = g(x) for the quantity X_o and price P_o is (a) $\int_0^{x_0} g(x) dx - p_0 x_0$ (b) $p_0 x_0 - \int_0^{x_0} g(x) dx$ (c) $\int_0^{x_0} g(x) dx$ (d) $\int_0^{p_0} g(x) dx$ 11) The are bounded by the demand curve xy = 1, the X-axis, x = 1 and x = 2 is _.... (d) $\frac{1}{2} \log 2$ (a) log 2 (b) $\log \frac{1}{2}$ (c) 2 log 2 ¹²⁾ The order and degree of the differential equation $\left(\frac{d^2y}{dx^2}\right)^{rac{1}{2}} - \sqrt{rac{dy}{dx}} - 4 = 0$ are respectively (a) 2 and 6 (b) 3 and 6 (d) 2 and 4 (c) 1 and 4 13) If $y=cx + c - c^3$ then its differential equation is (a) $y = \frac{dy}{dx} + \frac{dy}{dx} - \left(\frac{dy}{dx}\right)^3$ (b) $y = \left(\frac{dy}{dx}\right)^3 = x\frac{dy}{dx} - \frac{dy}{dx}$ (c) $\frac{dy}{dx} + y = \frac{dy}{dx}^3 - x\frac{dy}{dx}$ (d) $\frac{d^3y}{dx^3} = 0$ 14) The complementary function of $(D^2+4)y = e^{2x}$ is (a) (Ax +B)e^{2x} (b) (Ax +B)e^{-2x} (c) $A \cos 2x + B \sin 2x$ (d) $Ae^{-2x} + Be^{2x}$ 15) The solution of the differential equation $\frac{dy}{dx}$ + Py = Q where P and Q are the function of x is (d) ye∫Pdx=∫Qe^{-∫Pdx}dx + c (a) $y = \int Qe^{\int Pdx} dx + c$ (b) $y = \int Qe^{\int Pdx} dx + c$ (c) $ye^{\int Pdx} = \int Qe^{\int Pdx} dx + c$ The form of $\frac{dy}{dx} = \frac{y(x-y)}{x(x+y)}$ by taking y vx and $\frac{dy}{dx} = v + x \frac{dv}{dx}$ (b) $\frac{2v^2}{1+v} dv = -\frac{dx}{x}$ (c) $\frac{2v^2}{1-v} dv = \frac{dx}{x}$ (d) $\frac{1+v}{2v^2} dv = -\frac{dx}{x}$ 16) The variable separable form of $\frac{dy}{dx} = \frac{y(x-y)}{x(x+y)}$ by taking y vx and $\frac{dy}{dx} = v + x \frac{dv}{dx}$ (a) $\frac{2v^2}{1+v}dv = \frac{dx}{r}$ 17) The I.F. of $\frac{dy}{dx}$ -y tan x = cos x is _ (c) e^{tanx} (b) cos x (a) sec x (d) cot x

18) For the given points (x_0, y_0) and (x_1, y_1) the Lagrange's formula is

- 32) Parithi is either sad (S) or happy (H) each day. If he is happy in one day, he is sad on the next day by four times out of five. If he is sad on one day, he is happy on the next day by two times out of three. Over a long run, what are the chances that Parithi is happy on any given day?
- 33) Two products A and B currently share the market with shares 60% and 40% each respectively. Each week some brand switching latees place. Of those who bought A the previous week 70% buy it again whereas 30% switch over to B. Of those who bought B the previous week, 80% buy it again whereas 20% switch over to A. Find their shares after one week and after two weeks.
- 34) Evaluate $\int (log x)^2 dx$
- 35) Evaluate $\int \frac{dx}{2+x-x^2}$
- 36) Evaluate the integral as the limit of a sum: $\int_{1}^{2} x^{2} dx$
- 37) Using integration find the area of the circle whose center is at the origin and the radius is a units.
- 38) Find the area of the region bounded by the line y = x 5, the x-axis and between the ordinates x=3and x=7
- 39) Solve: $\cos^2 x \, dy + y \cdot e^{\tan x} \, dx = 0$
- 40) Prove that $f(4) = f(3) + \Delta f(2) + \Delta^2 f(1) + \Delta^3 f(1)$ taking '1' as the interval of differencing.

41)

An automobile company uses three types of Steel S, S and S for providing three different types of Cars C, C and C. Steel requirement R (in tonnes) for each type of car and total available steel of all the three types are summarized in the following table.

Tupos of Stool	Types of	Car	Total Steel	
Types of Steel	C1	C ₂	C ₃	available
S ₁	3	2	1	28
S ₂	1	1	2	13
S ₃	2	2	2	14

Determine the number of Cars of each type which can be produced by Cramer's

rule.

42) Evaluate $\int \frac{dx}{x(x^3+1)}$

- 43) If $\int_a^b dx = 1$ and $\int_a^b x dx = 1$, then find a and b
- 44) A company produces 50,000 units per week with 200 workers. The rate of change of productions with respect to the change in the number of additional labour x is represented as 300 - 5x^{1/2} If 64 additional labours are employed, find out the additional number of units, the company can produce.
- 45) Solve $ydx xdy 3x^2y^2e^{x^3}dx = 0$
- 46) Using graphic method, find the value of y when x = 38 from the following data:

x	10	20	30	40	50	60
у	63	55	44	34	29	22

47) Calculate the value of y when x = 7.5 from the table given below

х	1	2	3	4	5	6	7	8	
у	1	8	27	64	125	216	343	512	
