விளையாட்டுத்துறையும், கணிதத்துறையும் ஓன்று விடா முயற்சி+கடின பயிற்சி = வெற்றி


Maths

QUARTERLY MODEL EXAM 2022-2023
Date : 08-Sep-22
Reg.No. :
Exam Time : 03:00:00 Hrs PART - A

1) Let $f$ and $g$ be two functions given by

Total Marks : 100
$14 \times 1=14$
$\square$
$f=\{(0,1),(2,0)(34),(4,2),(5,7)\}$
$\mathrm{g}=\{(0,2),(1,0),(2,4),(-4,2),(7,0)\}$ then the range of $\mathrm{f} \circ \mathrm{g}$ is
(a) $\{0,2,3,4,5\}$
(b) $\{-4,1,0,2,7\}$
(c) $\{1,2,3,4,5\}$
(d) $\{0,1,2\}$
2) Composition of functions is commutative
(a) Always true
(b) Never true
(c) Sometimes true
3) If the HCF of 65 and 117 is expressib e in the form of $65 m-117$, then the value of $m$ is
(a) 4
(b) 2
(c) 1
(d) 3
4) If 6 times of $6^{\text {th }}$ term of an A.P. is equal to 7 times the $7^{\text {th }}$ term, then the $13^{\text {th }}$ term of the A.P. is
(a) 0
(b) 6
(c) 7
(d) 13
5) If $A=2^{65}$ and $B=2^{64}+2^{63}+2^{62}+\ldots+2^{0}$ Which of the following is true?
(a) $B$ is $2^{64}$ more than $A$
(b) $A$ and $B$ are equal
(c) $B$ is larger than $A$ by 1
(d) $A$ is larger than $B$ by 1
6) If $(x-6)$ is the HCF of $x^{2}-2 x-24$ and $x^{2}-k x-6$ then the value of $k$ is
(a) 3
(b) 5
(c) 6
(d) 8
7) The values of $a$ and $b$ if $4 x^{4}-24 x^{3}+76 x^{2}+a x+b$ is a perfect square are
(a) 100,120
(b) 10,12
(c) $-120,100$
(d) 12,10
8) If the roots of the equation $q^{2} x^{2}+p^{2} x+r^{2}=0$ are the squares of the roots of the equation $q x^{2}+p x+r=0$, then $q, p, r$ are in $\qquad$ .
(a) A.P
(b) G.P
(c) Both A.P and G.P
(d) none of these
9) If in triangles $A B C$ and EDF, $\frac{A B}{D E}=\frac{B C}{F D}$ then they will be similar, when
(a) $\angle B=\angle E$
(b) $\angle A=\angle D$
(c) $\angle B=\angle D$
(d) $\angle A=\angle F$
10) In a given figure $S T \| Q R, P S=2 \mathrm{~cm}$ and $S Q=3 \mathrm{~cm}$ Then the ratio of the area of $\triangle P Q R$ to the a ea $\triangle P S T$ is

(a) $25: 4$
(b) $25: 7$
(c) 25: 11
(d) $25: 13$
11) The straight line given by the equation $x=11$ is
(a) parallel to X axis
(b) parallel to $Y$ axis
(c) passing through the origin
(d) passing through the point $(0,11)$
12) The slope of the line joining $(12,3),(4, a)$ is $\frac{1}{8}$. The value of ' $a$ ' is
(a) 1
(b) 4
(c) -5
(d) 2
13) $(2,1)$ is the point of intersection of two lines.
(a) $x-y-3=0 ; 3 x-y-7=0$
(b) $x+y=3 ; 3 x+y=7$
(c) $3 x+y=3 ; x+y=7$
(d) $x+3 y-3=0 ; x-y-7=0$
14) The value of is $\sin ^{2} \theta+\frac{1}{1+\tan ^{2} \theta}$ equal to
(a) $\tan ^{2} \theta$
(b) 1
(c) $\cot ^{2} \theta$
(d) 0

PART - B
Answer any 10 questions Question No. 28 is compulsay
15) Find $f \circ g$ and $g$ of when $f(x)=2 x+1$ and $g(x)=x^{2}-2$
16) Check whether the following sequences are in A.P. or not? $x+2,2 x+3,3 x+4, \ldots$
17) Find he $19^{\text {th }}$ term of an A.P. $-11,-15,-19, \ldots$.
18) Find the first term of a G.P. in which $S_{6}=4095$ and $r=4$
19) If the difference between the roots of the equation $x^{2}-13 x+k=0$ is 17 . find $k$
20) If $a, \beta$ are the roots of the equation $3 x^{2}+7 x-2=0$, find the values of $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}$
21) If $a$ and $\beta$ are the roots of $x^{2}+7 x+10=0$ find the values of $a^{2}+\beta^{2}$
22) $Q A$ and $P B$ are perpendiculars to $A B$. If $A O=10 \mathrm{~cm}, B O=6 \mathrm{~cm}$ and $P B=9 \mathrm{~cm}$. Find $A Q$.

23) Find the equation of a line through the given pair of points $\left(2, \frac{2}{3}\right)$ and $\left(\frac{-1}{2}, 2\right)$
24) Show that the straight lines $x-2 y+3=0$ and $6 x+3 y+8=0$ are perpendicular.
25) What is the inclination of a line whose slope is 1
26) Show that the given vertices form a right angled triangle and check whether its satisfies Pythagoras theorem $L(0,5), M(9,12)$ and $N(3,14)$
27) prove that $\sqrt{\frac{1+\cos \theta}{1-\cos \theta}}=\operatorname{cosec} \theta+\cot \theta$
28) prove the following identities
$\sqrt{\frac{1+\sin \theta}{1-\sin \theta}}+\sqrt{\frac{1+\sin \theta}{1-\sin \theta}}=2 \sec \theta$
PART - C
$14 \times 5=70$
Answer any 10 questions. Question No. 42 is compulsay
29) If the function $f: R \rightarrow R$ defined by
$f(x)=\left\{\begin{array}{l}2 x+7, x<-2 \\ x^{2}-2,-2 \leq x<3 \\ 3 x-2, x \geq 3\end{array}\right.$
(i) $f(4)$
(ii) $f(-2)$
(iii) $f(4)+2 f(1)$
(iv) $\frac{f(1)-3 f(4)}{f(-3)}$
30) Find the sum to $n$ terms of the series $5+55+555+\ldots$
31) Find the GCD of the polynomials $x^{3}+x^{2}-x+2$ and $2 x^{3}-5 x^{2}+5 x-3$.
32) Find the square root of the following expressions
$16 x^{2}+9 y^{2}-24 x y+24 x-18 y+9$
33) Find the square root of the expression $\frac{4 x^{2}}{y^{2}}+\frac{20 x}{y}+13-\frac{30 y}{x}+\frac{9 y^{2}}{x^{2}}$
34) The roots of the equation $x^{2}+6 x-4=0$ are $a, \beta$. Find the quadratic equation whose roots are
$a^{2}$ and $\beta^{2}$
35) In trapezium $A B C D, A B \| D C, E$ and $F$ are points on non-parallel sides $A D$ and $B C$ respectively, such that $E F \| A B$. Show that $A E \frac{A E}{E D}=\frac{B F}{F C}$
$36)$ In the figure, find the area of triangle AGF

37) If the points $A(2,2), B(-2,-3), C(1,-3)$ and $D(x, y)$ form a parallelogram then find the value of $x$ and $y$.
38) Find the equation of the median and altitude of $\triangle A B C$ through $A$ where the vertices are $A(6$, 2), $B(-5,-1)$ and $C(1,9)$
39) Prove that $\sin ^{2} A \cos ^{2} B+\cos ^{2} A \sin ^{2} B+\cos ^{2} A \cos ^{2} B+\sin ^{2} A \sin ^{2} B=1$
40) if $\cos \theta+\sin \theta=\sqrt{2} \cos \theta$, then prove that $\cos \theta-\sin \theta=\sqrt{2} \sin \theta$
41) If $\frac{\cos \alpha}{\cos \beta}=m$ and $\frac{\cos \alpha}{\sin \beta}=\mathrm{n}$, then prove that $\left(\mathrm{m}^{2}+\mathrm{n}^{2}\right) \cos ^{2} \beta=\mathrm{n}^{2}$
42) if $\frac{\cos \theta}{1+\sin \theta}=\frac{1}{a}$, then prove that $\frac{a^{2}-1}{a^{2}+1}=\sin \theta$

PART - D
Answer any one from 43 \& 44 and any one from 45 \& 46.
43) Varshika drew 6 circles with different sizes. Draw a graph for the relationship between the diameter and circumference of each circle as shown in the table and use it to find the circumference of a circle when its diameter is 6 cm .

| Diameter (x)cm | 1 | 2 | 3 | 4 | 5 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Circumference (y)cm | 3.1 | 6.2 | 9.3 | 12.4 | 15.5 |

44) A bus is travelling at a uniform speed of $50 \mathrm{~km} / \mathrm{hr}$. Draw the distance-time graph and hence find
(i) the constant of variation
(ii) how far will it travel in $\frac{1}{2}$
(iii) the time required to cover a distance of 300 km from the graph.
45) Construct a triangle similar to a given triangle $P Q R$ with its sides equal to $\frac{3}{5}$ of the corresponding sides of the triangle PQR (scale factor $\frac{3}{5}<1$ )
46) Construct a $\triangle P Q R$ which the base $P Q=4.5 \mathrm{~cm}, \angle R=35^{\circ}$ and the median $R G R$ to $P G$ is 6 cm

விளையாட்டுத்துறையும், கணிதத்துறையும் ஓன்று விடா முயற்சி+கடின பயிற்சி = வெற்றி


Maths

$14 \times 1=14$

1) (d) $\{0,1,2\}$
2) (a) Always true
3) (c) 1
4) (a) 0
5) (d) $A$ is larger than $B$ by 1
6) (b) 5
7) (c) $-120,100$
8) (b) G.P
9) (c) $\angle B=\angle D$
10) 

(a) $25: 4$
11)
(b) parallel to $Y$ axis
12)
(d) 2
13)
(b) $x+y=3 ; 3 x+y=7$
14)
(b) 1

PART - B
Answer any 10 quest ons. Question No. 28 is compulsay
15)
$f(x)=2 x+1, g(x)=x^{2}-2$
fo $g(x)=f(g(x))=f\left(x^{2}-2\right)=2\left(x^{2}-2\right)+1=2 x^{2} \quad 3$
$g \circ f(x)=g(f(x))=g(2 x+1)=(2 x+1)^{2}-2=4 x^{2}+4 x-1$
Thus $f \circ \mathrm{~g}=2 \mathrm{x}^{2}-3, \mathrm{~g} \circ \mathrm{f}=4 \mathrm{x}^{2}+4 \mathrm{x} \quad 1$ From the above, we see that $\mathrm{f} \circ \mathrm{g} \neq \mathrm{g} \circ \mathrm{f}$
16)

To check that the given sequence is in A.P., it is enough to check if the differences between the consecutive terms are equal or not.
$t_{2}-t_{1}=(2 x+3)-(x-2)=x+1$
$t_{3}-t_{1}=(3 x+4)-(2 x+3)=x+1$
$t_{2}-t_{1}=t_{3}-t_{2}$
Thus, the differences between consecutive terms are equal.
Hence the sequence $x+2,2 x+3,3 x+4, \ldots \ldots$ is in A.P

Given the A.P. $-11,-15,-19, \ldots$
Here First term $\mathrm{a}=-11$
Common difference $d=t_{2}-t_{1}=-15-(-11)$
$=-15+11$
$\mathrm{d}=-4$
$\mathrm{n}^{\text {th }}$ term of an A.P. is $\mathrm{t}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$19^{\text {th }}$ term $\left(\mathrm{t}_{19}\right)=-11+\left(\begin{array}{ll}19 & 1\end{array}\right)(4)$
$=-11+18(-4)$
$=-11+(-72)=-83$
19th term of $-11,-15,-19, \ldots$ is -83 .
18)

Common ratio $=4>1$, sum of first 6 terms $S_{6}=4095$
Hence, $\mathrm{S}_{6}=\frac{a\left(r^{n}-1\right)}{r-1}=4095$
Since, $\mathrm{r}=4, \frac{a\left(4^{6}-1\right)}{4-1}=4095$ gives a $\times \frac{4095}{3}=4095$
First term $\mathrm{a}=3$.
19)
$x^{2}-13 x+k=0$ here, $a=1, b=-13, c=k$
Let $a, \beta$ be the roots of the equation. Then
$a+\beta=\frac{-b}{a}=\frac{-(-13)}{1}=13 \ldots \ldots$ (1) also $a-\beta=17$
(1) + (2) we get, $2 a=30$ gives $a=15$

Therefore, $15+\beta=13$ (from (1)) gives $\beta=-2$
But, $\mathrm{a} \beta=\frac{c}{a}=\frac{k}{1}$ gives $15 \times(-2)=\mathrm{k}$ we get, $\mathrm{k}=-30$
20)
$3 x^{2}+7 x-2=0$ here, $a=3, b=7, c=-2$
since, $a, \beta$ are the roots of the equation
$a+\beta=\frac{-b}{a}=\frac{-7}{3}, a \beta=\frac{c}{a}=\frac{-2}{3}$
$\frac{\alpha}{\beta}+\frac{\beta}{\alpha}=\frac{\alpha^{2}+\beta^{2}}{\alpha \beta}=\frac{(\alpha+\beta)^{2}-2 \alpha \beta}{\alpha \beta}=\frac{\left(\frac{-7}{3}\right)^{2}-2\left(\frac{-2}{3}\right)}{\frac{-2}{3}}=\frac{-61}{6}$
21)

$$
x^{2}+7 x+10 \text { here, } a=-1, b=7, c=10
$$

if $a$ and $\beta$ are roots of the equation then,
$a+\beta=\frac{-b}{a}=\frac{-7}{1}=-7 ; a \beta=\frac{c}{a}=\frac{10}{1}=10$
$a^{2}+\beta^{2}=(a+\beta)^{2}-2 a \beta=(-7)^{2}-2 \times 10=29$
22)
$\triangle A O Q$ and $\triangle B O P, \angle O A Q=\angle O B P=90^{\circ}$
$\angle A O Q=\angle B O P$ (Vertically opposite angles)
Therefore, by AA Criterion of similarity,
$\triangle A O Q \sim \triangle B O P$
$\frac{A O}{B O}=\frac{O Q}{O P}=\frac{A Q}{B P}$
$\frac{10}{6}=\frac{A Q}{9}$ gives $A Q=\frac{10 \times 9}{6}=15 \mathrm{~cm}$
23)

Given points $\left(2, \frac{2}{3}\right)$ and $\left(-\frac{1}{2},-2\right)$
Equation of the line passing through $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$
$\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{x-x_{1}}{x_{2}-x_{1}}$
$\frac{y-\frac{2}{3}}{-2-\frac{2}{3}}=\frac{x-2}{-\frac{1}{2}-2}$
$\frac{3 y-2}{-6-2}=\frac{2 x-4}{-1-4}$
$-5(3 y-2)=-8(2 x-4)$
$-15 y+10=-16 x+32$
$16 x-15 y-22=0$
24)

Show of the straight lines $x-2 y+3=0$ is
$\mathrm{m}_{1}=\frac{-1}{-2}=\frac{1}{2}$
Slope of the straight line $6 x+3 y+8=0$ is
$m_{2}=\frac{-6}{3}=-2$
Now, $m_{1} \times m_{2}=\frac{1}{2} \times(-2)=-1$
Hence, the two straight lines are perpendicular
25)

Slope 'm' = 1
$\tan \theta=1=\tan 45^{\circ}$
$\theta=45^{\circ}$
26)
$L(0,9), M(9,12)$ and $N(3,14)$
Slope of a line $=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}$
Slope of LM $=\frac{5-12}{0-9}=\frac{-7}{-9}=\frac{7}{9}$
Slope of $M N=\frac{12-14}{9-3}=\frac{-2}{6}=\frac{-1}{3}$
Slope of $L N=\frac{5-14}{0-3}=\frac{-9}{-3}=3$
(Slope of MN) $\times$ (slope of LN) $=\left(-\frac{1}{3}\right) \times 3=-1$
MN is perpendicular to LN.
Hence, the given vertices form a right angled triangle
Distance formula $=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$
$\mathrm{LM}=\sqrt{(0-9)^{2}+(5-12)^{2}}=\sqrt{81+49}=\sqrt{130}$
$L^{2}{ }^{2}=130$
$\mathrm{MN}=\sqrt{(9-3)^{2}+(12-14)^{2}}=\sqrt{36+4}=\sqrt{40}$
$M N^{2}=40$
$\mathrm{LN}=\sqrt{(0-3)^{2}+(5-14)^{2}}=\sqrt{9+81}=\sqrt{90}$
$\mathrm{LN}^{2}=90$
$L N^{2}+M N^{2}=L M^{2}$
Hence, the Pythagoras theorem is satisfied.
27)
$\sqrt{\frac{1+\cos \theta}{1-\cos \theta}}=\sqrt{\frac{1+\cos \theta}{1-\cos \theta} \times \frac{1+\cos \theta}{1+\cos \theta}}$ [multiply numerator and denominator by the conjugate of $1-$
$\cos \theta]$
$=\sqrt{\frac{(1+\cos \theta)^{2}}{(1-\cos \theta)^{2}}}=\frac{1+\cos \theta}{\sqrt{\sin ^{2} \theta}}\left[\operatorname{since} \sin ^{2} \theta+\cos ^{2} \theta=1\right]$
$=\frac{1+\cos \theta}{\sin \theta}=\operatorname{cosec} \theta+\cot \theta$
$\sqrt{\frac{1+\sin \theta}{1-\sin \theta}}=\sec \theta+\tan \theta$
$\mathbf{L H S}=\sqrt{\frac{1+\sin \theta}{1-\sin \theta}}$
$=\sqrt{\frac{1+\sin \theta}{1-\sin \theta} \times \frac{1-\sin \theta}{1-\sin \theta}}$
[Multiplying the Numerator and denominator by $\sqrt{1-\sin \theta}$ ]
$=\sqrt{\frac{1^{2}-\sin ^{2} \theta}{(1-\sin \theta)^{2}}} \quad\left[\because(a+b)(a-b)=a^{2}-b^{2}\right]$
$=\sqrt{\frac{\cos ^{2} \theta}{(1-\sin \theta)^{2}}} \quad\left[\because 1-\sin ^{2} \theta=\cos ^{2} \theta\right]$
$=\frac{\cos \theta}{1-\sin \theta}$
$=\frac{\cos \theta}{1-\sin \theta} \times \frac{1+\sin \theta}{1+\sin \theta}$
[Multiplying Numerator and denominator by $1+\sin \theta$ ]
$=\frac{\cos \theta(1+\sin \theta)}{1^{2}-\sin ^{2} \theta}=\frac{\cos \theta(1+\sin \theta)}{\cos ^{2} \theta}$
$\left[\because(a+b)(a-b)=a^{2}-b^{2}\right]\left[1-\sin ^{2} \theta=\cos ^{2} \theta\right]$
$=\frac{1+\sin \theta}{\cos \theta}=\frac{1}{\cos \theta}+\frac{\sin \theta}{\cos \theta}$
$=\sec \theta+\tan \theta=\mathrm{RHS}$
PART - C
Answer any 10 questions. Question No. 42 is compulsay
29)

The function f is defined by three values in intervals I, II, III as shown by the side.
For a given value of $x=a$, find out the interval at which the point a is located, there after find
$f(a)$ using the particular value defined in that interval.
(i) First, we see that, $x=4$ lie in the third interval.

Therefore, $f(x)=3 x-2 ; f(4)=3(4)=10$
(ii) $x=-2$ lies in the second interval

Therefore, $f(x)=x^{2}-2 ; f(-2)=(-2)^{2}-2=2$
(iii) From (i), f(4) $=10$.

To find $f(1)$ first we see that $x=1$ lies in the second interval.
Therefore, $f(x)=x^{2}-2 \Rightarrow f(1)=1^{2}-2=-1$
So, $f(4)+2 f(1)=10+2(-1)=8$
(iv) We know that $f(1)=-1$ and $f(4)=10$

For finding $f(-3)$, we see that $x=-3$, lies in the first interval.
Therefore, $f(x)=2 x+7$; thus, $f(-3)=2(-3)+7=1$
Hence, $\frac{f(1)-3 f(4)}{f(-3)}=\frac{-2-3(10)}{1}=-31$


Fig. 1.39
30)

The series is neither Arithmetic nor Geometric series. So it can be split into two series and then find the sum.
$5+55+555+\ldots+n$ terms $=5[1+11+111+\ldots n$ terms $]$
$=\frac{5}{9}[9+99+999+\ldots+n$ terms $]$
$=\frac{5}{9}[(10-1)+(100-1)+(1000-1)+\ldots+n$ terms $]$
$=\frac{5}{9}[10+100+1000+\ldots+n$ terms $\left.)-\mathrm{n}\right]$
$=\frac{5}{9}\left[\frac{10\left(10^{n}-1\right)}{(10-1)}-n\right]=\frac{50\left(10^{n}-1\right)}{81}=\frac{5 n}{9}$

Let $f(x)=2 x^{3}-5 x^{2}+5 x-3$ and $g(x)=x^{3}+x^{2}-x+2$

$$
x^{3}+x^{2}-x+2 \begin{array}{|}
\begin{array}{|c}
\frac{2 x^{3}-5 x^{2}+5 x-3}{2 x^{3}+2 x^{2}-2 x+4} \\
\frac{-7 x^{2}+7 x-7}{}
\end{array}
\end{array}
$$

$$
=-7\left(x^{2}-a+1\right)
$$

$-7\left(x^{2}-x+1\right) \neq 0$, note that -7 is not a divisor of $g(x)$
Now dividing, $g(x)=x^{3}+x^{2}-x+2$ by the new remainder $x^{2}-x+1$ (leaving the constant factor), we get

$$
x^{2}-x+1 \begin{array}{|c}
\begin{array}{|c}
x^{3}+x^{2}-x+2 \\
x^{3}-x^{2}+x
\end{array} \\
\begin{array}{|c}
2 x^{2}-2 x+2 \\
2 x^{2}-2 x+2 \\
0
\end{array} \\
\hline
\end{array}
$$

Here, we get zero remainder
Therefore, GCD $\left(2 x^{3}-5 x^{2}+5 x-3, x^{3}+x^{2}-x+2\right)=x^{2}-x+1$.
32)

$$
\begin{aligned}
& \sqrt{16 x^{2}+9 y^{2}-24 x y+24 x-18 y+9} \\
= & \sqrt{(4 x)^{2}+(-3 y)^{2}+(3)^{2}+2(4 x)(-3 y)+2(-3 y)(3)+2(4 x)(3)} \\
= & \sqrt{(4 x+-3 y+3)^{2}}=|4 x-3 y+3|
\end{aligned}
$$

33) 



Hence $\sqrt{\frac{4 x^{2}}{y^{2}}+\frac{20 x}{y}+13-\frac{30 y}{x}+\frac{9 y^{2}}{x^{2}}}=\left|\frac{2 x}{y}+5-\frac{3 y}{x}\right|$
34)

If the roots are given, the quadratic equation is $X^{2}$ - (sum of the roots) $x+$ product the roots $=0$. For the given equation.
$x^{2}-6 x-4=0$
$\alpha+\beta=-6$
$\alpha \beta=-4$
$\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta$
$=(-6)^{2}-2(-4)=36+8=44$
$\alpha^{2} \beta^{2}=(\alpha \beta)^{2}=(-4) 2=16$
$\therefore$ The requird equation $=\mathrm{x}^{2}-44 \mathrm{x}+16=0$

$G$ ven: $A B C D$ is a trapezium in which $D C I I A B$ and $E F$ II $A B$
To prove that $\frac{A E}{E D}=\frac{B F}{F C}$
Construction : join AC meeting EF at G
Proof:
In ADC, we have
EG II DC
$\Rightarrow \frac{A E}{E D}=\frac{A G}{G C}$ [By thales theorem]
In $A B C$, we have
$\frac{A G}{G C}=\frac{B F}{F C}$ [Bv thales theorem]
From (1) and (2), we get
$\frac{A E}{E D}=\frac{B F}{F C}$
36)

Area of triangle AGF
Vertices A (-5,3), G (-4.5,0.5) and F (-2,3).
Area of triangle $=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$ sq. units
$=\frac{1}{2}[-5(0.5-3)-4.5(3-3)-2(3-0.5)]$
$=\frac{1}{2}[12.5-5]=\frac{7.5}{2}=3.75$ sq. units
37)

Given points $A(2,2), B(-2,-3), C(1,-3)$ and $D(x, y)$

Slope of a line $=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}$
Slope of $A B=\frac{2+3}{2+2}=\frac{5}{4}$
Slope of $B C=\frac{-3+3}{-2-1}=0$
Slope of CD $=-\frac{-3-y}{1-x}$
Slope of AD $=\frac{2-y}{2-x}$
Since, the points form a parallelogram
$A B$ is parallel to $C D$ and $B C$ is parallel to $A D$
Slope of $A B=$ Slope of $C D$
$\frac{5}{4}=\frac{-3-y}{1-x}$
$5(1-x)=4(-3-y)$
$5-5 x=-12-4 y$
$5 x-4 y=17$
Slope of BC = Slope of AD
$0=\frac{2-y}{2-x}$
$2-y=0$
$y=2$
Substituting in (1)
$5 x-4(2)=17$
$5 x=17+8=25$
$x=\frac{25}{5}=5$
$x=5, y=2$
38)

Given vertices are $A(6,2), B(-5,-1)$ and $C(1,9)$
Median through A:
Let $D$ be the mid point of $B C$
Mid point of $\mathrm{BC}=\mathrm{D}\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
$=\mathrm{D}\left(\frac{-5+1}{2}, \frac{-1+9}{2}\right)$
$=D(-2,4)$
Now AD is the median.
Equation of AD $\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{x-x_{1}}{x_{2}-x_{1}}$
$\frac{y-2}{4-2}=\frac{x-6}{-2-6}$
$\frac{y-2}{2}=\frac{x-6}{-8}$
$-4 y+8=x-6$
$x+4 y-14=0$
Altitude through $A$


Altitude is passing through ' A and perpendicular to $B C$.
Now,
Slope of $\mathrm{BC}=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}=\frac{-1-9}{-5-1}=\frac{-10}{-6}=\frac{5}{3}$
Slope of Altitude $=-\frac{3}{5}$
Equation of the altitude which is passing through $A(6,2)$ and having slope $-\frac{3}{5}$ is
$\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$y-2=-\frac{3}{5}(x-6)$
$5 y-10=-3 x+18$
$3 x+5 y-28=0$
39)
$\sin ^{2} A \cos ^{2} B+\cos ^{2} A \sin ^{2} B+\cos ^{2} A+\cos ^{2} B+\sin ^{2} A \sin ^{2} B$
$=\sin ^{2} A \cos ^{2} B+\sin ^{2} A \sin ^{2} B+\cos ^{2} A+\cos ^{2} B+\sin ^{2} A \sin ^{2} B$
$=\sin ^{2} A\left(\cos ^{2} B+\sin ^{2} B\right)+\cos ^{2} A\left(\sin ^{2} B+\cos ^{2} B\right)$
$=\sin ^{2} A(1)+\cos ^{2} A(1)\left(\right.$ since $\left.\sin ^{2} B+\cos ^{2} B=1\right)$
$=\sin ^{2} A+\cos ^{2} A=1$
40)

Now, $\cos \theta+\sin \theta=\sqrt{2} \cos \theta$
Squaring both sides,
$(\cos \theta+\sin \theta)^{2}=(\sqrt{2} \cos \theta)^{2}$
$\cos ^{2} \theta+\sin ^{2} \theta+2 \sin \theta \cos \theta=2 \cos ^{2} \theta$
$2 \cos ^{2} \theta-\cos ^{2} \theta-\sin ^{2} \theta=2 \sin \theta \cos \theta$
$\cos ^{2} \theta-\sin ^{2} \theta=2 \sin \theta \cos \theta$
$(\cos \theta+\sin \theta)(\cos \theta+\sin \theta)=2 s n \theta \cos \theta$
$\cos \theta-\sin \theta=\frac{2 \sin \theta \cos \theta}{\cos \theta+\sin \theta}=\frac{2 \sin \theta \cos \theta}{\sqrt{2} \cos \theta}[$ since $\cos \theta+\sin \theta=\sqrt{2} \cos \theta]$
$=\sqrt{2} \cos \theta$
Therefore $\cos \theta-\sin \theta=\sqrt{2} \cos \theta$
41)

Given

$$
\begin{aligned}
& \frac{\cos \alpha}{\cos \beta}=m \\
& \frac{\cos \alpha}{\sin \beta}=n \\
& \text { LHS }=\left(m^{2}+n^{2}\right) \cos ^{2} \beta \\
& =\left(\frac{\cos ^{2} \alpha}{\cos ^{2} \beta}+\frac{\cos ^{2} \alpha}{\sin ^{2} \beta}\right) \cos ^{2} \beta \\
& =\frac{\left(\cos ^{2} \alpha \sin ^{2} \beta+\cos ^{2} \alpha \cos ^{2} \beta\right)}{\cos ^{2} \beta \sin ^{2} \beta} \cos ^{2} \beta \\
& =\frac{\cos ^{2} \alpha\left(\sin ^{2} \beta+\cos ^{2} \beta\right)}{\sin ^{2} \beta} \\
& =\frac{\cos ^{2} \alpha}{\sin ^{2} \beta}(1) \\
& =\left(\frac{\cos ^{2} \alpha}{\sin ^{2} \beta}\right)^{2} \\
& =\mathrm{n}^{2}=\text { RHS }
\end{aligned}
$$

42) 

Given $\frac{\cos \theta}{1+\sin \theta}=\frac{1}{a}$
$\therefore a=\frac{1+\sin \theta}{\cos \theta}$
LHS $=\frac{a^{2}-1}{a^{2}+1}$
$=\frac{\left(\frac{1+\sin \theta}{\cos \theta}\right)^{2}-1}{\left(\frac{1 \sin \theta}{\cos \theta}\right)^{2}+1}$
$=\frac{\frac{1^{2}+\sin ^{2} \theta+2 \sin \theta}{\cos ^{2} \theta}-1}{\frac{1^{2}+\sin ^{2} \theta+2 \sin \theta}{\cos ^{2} \theta}+1}$
$=\frac{\frac{\frac{1+\sin ^{2} \theta+2 \cos ^{2} \theta}{\sin \theta-\cos ^{2} \theta}}{\cos ^{2} \theta}}{\frac{1+\sin ^{2} \theta+2 \sin \theta+\cos ^{2} \theta}{\sin ^{2} \theta}}$
$=\frac{\left(1-\cos ^{2} \theta\right)+\sin ^{2} \theta+2 \sin \theta}{\cos ^{2} \theta} \times \frac{\cos ^{2} \theta}{1+\left(\sin ^{2} \theta+\cos ^{2} \theta\right)+2 \sin \theta}$
$=\frac{\sin ^{2} \theta+\sin ^{2} \theta+2 \sin \theta}{1+1+2 \sin \theta}$
$=\frac{2 \sin ^{2} \theta+2 \sin \theta}{2+2 \sin \theta}$
$=\frac{2 \sin \theta(\sin \theta+1)}{2(1+\sin \theta)}$
$=\sin \theta=$ RHS
PART - D
Answer any one from 43 \& 44 and any one from 45 \& 46.


From the table, we found that as $x$ increses, $y$ also increases. Thus the variation is a direct variation.
Let $y=k x$, where $k$ is a constant of proportionality.
From the given values, we have
$k=\frac{3.1}{1}=\frac{6.2}{2}=\frac{9.3}{3}=\frac{12.4}{4}=\ldots=3.1$
When you plot the points $(1,3.1)(2,6.2)(3,9.3),(4,12.4),(5,15.5)$, you find the relation $y=(3.1) x$ forms a straight-line graph.
Clearly, from the graph, when diameter is 6 cm , its circumference is 18.6 cm .
44)


Let x be the time taken in minutes and y be the distance travelled in km

| Time taken x (in minutes) | 60 | 120 | 180 | 240 |
| :--- | :--- | :--- | :--- | :--- |
| Distance y (in km) | 50 | 100 | 150 | 200 |

(i) Observe that as time increases, the distance travelled also increases. Therefore, the variation is a direct variation. It is of the form $y=k x$.
Constant of variation
$k=\frac{y}{x}=\frac{50}{60}=\frac{100}{120}=\frac{150}{180}=\frac{200}{240}=\frac{5}{6}$
Hence, the relation may be given as
$y=k x \Rightarrow y=\frac{5}{6} x$
(ii) From the graph, $y=\frac{5 x}{6}$, if $\mathrm{x}=90$, then $y=\frac{5}{6} \times 90=75 \mathrm{~km}$

The distance travelled for $1 \frac{1}{2}$ hours (i.e.,) 90 minutes is 75 km .
(iii) From the graph, $y=\frac{5 x}{6}$, if $y=300$ then $x=\frac{6 y}{5}=\frac{6}{5} \times 300=360$ minutes (or) 6 hours.

The time taken to cover 300 km is 360 minutes, that is 6 hours.

Given a triangle PQR we are required to construct another triangle whose sides are $\frac{3}{5}$ of the corresponding sides of the triangle PQR.


Rough diagram


## Steps of construction

1. Construct a $\triangle P Q R$ with any measurement
2. Draw a ray $Q X$ making an acute angle with $Q R$ on the side opposite to vertex $P$.
3. Locate 5 (the greater of 3 and 5 in $\frac{3}{5}$ ) points.
$\mathrm{Q}_{1} \mathrm{Q}_{2}, \mathrm{Q}_{3}, \mathrm{Q}_{4}$ and $\mathrm{Q}_{5}$ on $\mathrm{QX}^{\text {so }}$ that $\mathrm{QQ}_{1}=\mathrm{Q}_{1} \mathrm{Q}_{2}=\mathrm{Q}_{3}=\mathrm{Q}_{4} \mathrm{Q}_{5}$
4. Join $Q_{5} R$ and draw a line through $Q_{3}$ (the third point, 3 being smaller of 3 and 5 in $\frac{3}{5}$ ) parallael to $Q_{5} R$ to intersect $Q R$ at $R$
5 Draw line through R' pa allel to the line RP to intersect QP at $P^{\prime}$.
Then, $\triangle P^{\prime} Q R^{\prime}$ is the required triangle each of whose sides is three fifths of the corresponding sides of $\triangle P Q R$.
46) 



Construction:
Step (1) Draw a line segment $\mathrm{PQ}=4.5 \mathrm{~cm}$
Step (2) At P, draw PE such that $\angle Q P E=35^{0}$
Step (3) At P, draw PF such that $\angle E P F=90^{\circ}$
Step (4) Draw $\perp$ bisector to PQ which intersects PF at O.
Step (5) With O centre OP as raidus draw a circle.
Step (6) From G, marked arcs of radius 6 cm on the circle marked them as R and S .
Step (7) foined $P R$ and $R Q$. Then $\triangle P Q R$ is the required triangle
Step (8) $\triangle P Q S$ is the required triangle

