SHRI VIDHYABHARATHI MATRIC HR.SEC.SCHOOL

SAKKARAMPALAYAM , AGARAM (PO) ELACHIPALAYAM

TIRUCHENGODE(TK), NAMAKKAL (DT) PIN-637202

Cett : 99655-31727, 94432-31727

COMMON QUARTERLY EXAMINATION 2018 (17.09.2018)

STD: XI

SUBJECT: CHEMISTRY CHE

CHEMISTRY ANSWER KEY

MARKS: 70

Q.NO	SECTION-I					MARKS	
1	c) CO + H ₂	2					1
2	b) 2 1 4	b) 2 1 4 3					1
3	a) Sum of	molar	• heat	of fusion and vapo	risation		1
4	a)4,6						1
5	b)NH₃						1
6	b)+6						1
7	d)-9E						1
8	c)+3 KJ						1
9	a)iv < ii <	iii <i< th=""><th></th><th></th><th></th><th></th><th>1</th></i<>					1
10	b)Both assertion and reasons are correct, but reason is not the correct						1
10	explanation	on of t	he as	sertion			1
11	a)Sodium	Alum	inium	n Silicate			1
12	c) Argon						1
13	b) Li and I	Mg (or	r) d)B	e and Al			1
14	b)negativ	е					1
15	c)kerosen	e					1
Q.NO				SECTIO			MARKS
16	The equivalent mass of an element, compound or ion is the number of parts of mass of an element which combines with or displaces 1.008 parts of hydrogen or 8 parts of oxygen or 35.5 parts of chlorine. Gram equi						2M
17	Orbital	n	1	Radial node n-l-1	Angular node l	Total Nodes	2M
	3d	3	2	0	2	2	2111
	4f	4	3	0	3	3	
18	$MgCl_2 + Ca(OH)_2 \longrightarrow Mg(OH)_2 + CaCl_2$ Removal of permanent hardness means (Mg & Ca) chlorides and sulphates are converted to insoluble carbonates but we can use Ca(OH)_2 means formed calcium chlorides only does not form insoluble carbonates					2M	
19	$Z_{eff} = Z-S$ $Z_{eff} = 2-0.30$ (for 1s e ⁻ = 0.30) $Z_{eff} = 1.70$					1M 1M	
20	 Hydrogen molecule in which protons in the nuclei of both H-atoms are known to spin in same direction is termed as ortho hydrogen. Hydrogen molecule in which protons in the nuclei of both H-atoms spin in opposite direction is termed as para hydrogen 					1M 1M 1M	

	Æ				
	Baking soda - Sodium bicarbonate (NaHCO ₃) (Any one use)	1M			
21	 (i) Sodium hydrogen carbonate is used as an ingredient in baking (ii) It is a mild antiseptic for skin infections 	1M			
22	(iii) It is also used in fire extinguishers. Plaster of paris is obtained when gypsum, CaSO ₄ .2H ₂ O, is heated to 393K $2(CaSO_4.2H_2O) \rightarrow 2CaSO_4. H_2O + 3H_2O$				
23	At room temperature, vapour pressure of liquid ammonia is very high and so will evaporate. If the bottle is opened, the sudden decrease in pressure will lead to increase in volume of the gas and cause breakage of the bottle. Cooling decreases the vapour pressure and maintains the liquid in the same state. Hence, the bottle is cooled before opening.				
24	 (i) The third law of thermodynamics states that the entropy of pure crystalline substance at absolute zero is zero. (ii) It can also be stated as it is impossible to lower the temperature of an object to absolute zero in a finite number of steps. (iii) Mathematically lim_{T→0} S = 0 for a perfectly ordered crystalline 				
Q.NO	SECTION-III	MARKS			
25	The electro-negativity generally increases across a period from left to right. As discussed earlier, the atomic radius decreases in a period, as the attraction between the valence electron and the nucleus increases. Hence the tendency to attract shared pair of electrons increases. Therefore, electro-negativity also				
	increases in a period The electro-negativity generally decreases down a group. As we move down a group the atomic radius increases and the nuclear attractive force on the valence electron decreases. Hence, the electro-negativity decreases.				
26	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	1½ M 1½ M			
	$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$				
	As per the stoichiometric equation, Combustion of 1 mole (16 g) CH4 produces 2 moles ($2 \times 18 = 36$ g) of water. CH ₄ =(12) + (4×1) = 16 g mol ⁻¹	1M			
27	Combustion of 1 mole (16 g) CH4 produces 2 moles (2 × 18 = 36 g) of water. $CH_4 = (12) + (4 \times 1) = 16 \text{ g mol}^{-1}$ $H_2O (2 \times 1) + (1 \times 16) = 18 \text{ g mol}^{-1}$ Combustion of 32 g CH ₄ produces	1M 1M			
27	Combustion of 1 mole (16 g) CH4 produces 2 moles (2 × 18 = 36 g) of water. $CH_4 = (12) + (4 \times 1) = 16 \text{ g mol}^{-1}$ $H_2O (2 \times 1) + (1 \times 16) = 18 \text{ g mol}^{-1}$	1M			
27	Combustion of 1 mole (16 g) CH4 produces 2 moles (2 × 18 = 36 g) of water. $CH_4 = (12) + (4 \times 1) = 16 \text{ g mol}^{-1}$ $H_2O (2 \times 1) + (1 \times 16) = 18 \text{ g mol}^{-1}$ Combustion of 32 g CH ₄ produces				
27	Combustion of 1 mole (16 g) CH4 produces 2 moles (2 × 18 = 36 g) of water. $CH_4 = (12) + (4 \times 1) = 16 \text{ g mol}^{-1}$ $H_2O (2 \times 1) + (1 \times 16) = 18 \text{ g mol}^{-1}$ Combustion of 32 g CH ₄ produces 36 g H 16 g C There are two types of Hydrogen bonding (i) Intramolecular hydrogen bonding	1M 1M			
27	Combustion of 1 mole (16 g) CH4 produces 2 moles ($2 \times 18 = 36$ g) of water. CH ₄ =(12) + (4×1) = 16 g mol ⁻¹ H ₂ O (2×1) + (1×16) = 18 g mol ⁻¹ Combustion of 32 g CH ₄ produces <u>36 g H</u> <u>16 g C</u> There are two types of Hydrogen bonding	1M 1M			

	1				
	Intermolecular hydro				
	example, intermolec				
	molecule themselves	1M			
	ammonia and water.				
				12.6	
		rs in ns orbitals known		1M	
29		2 in the modern periodic table are			
			The elements belonging to these two groups are ali and alkaline earth metals respectively.		
		2M			
	Charles law				
		ne volume is directly proportional n be represented as (at constant P			
	and n)	1 ½ M			
	or $V = kT$				
30	$\frac{r}{T} = Cons \tan t$				
50	Boyle's law				
	•	e the volume occupied	l by a fixed mass of a gas is		
	inversely proportiona		of a fined finass of a gas is		
		oyle's law can be writ	ten as	1 ½ M	
		,			
	$V\alpha \frac{1}{P}$ (1)				
	The enthalpy	change of a reaction ei	ther at constant volume or		
	constant pressure is t	he same whether it tak	es place in a single or multiple		
		itial and final states are		2M	
	A	ΔH_r B			
31					
	$\checkmark \Delta H_1$	ΔH_3			
	x	ΔH_2 Y			
				1M	
	$\Delta H_r = 2$	$\Delta H_1 + \Delta H_2 + \Delta H_3$			
	Compound	Molecular formu	la Empirical formula	1 ½ M	
32	Compound Fructose	-	lla Empirical formula CH ₂ O	1 72 IVI	
52	Caffeine	$C_6H_{12}O_6$		1 ½ M	
		$C_8H_{10}N_4O_2$	C ₄ H ₅ N ₂ O	I / 2 IVI	
	Atomic Number	IUPAC Name		11.4	
33	102	Unnilbium		1M 1M	
33	108	Unniloctium		1M 1M	
	111	Unununium		11/1	
		SECTION-	N	MARKS	
Q.NO	i) when a reacti		non-stoichiometric quantities of	MAKKS	
			mined by the reactant that is		
	completely consumed	2M			
34	called as the limiting		01		
57		can be explained on the	e basis of electrons.	1 ½ M	
	The reaction involvin	g loss of electron is ter	med oxidation		
	$\mathrm{Fe}^{2+} \rightarrow \mathrm{Fe}^{3+} + \mathrm{e}^{-} (\mathrm{los})$				
	The reaction involvin				
	$Cu^{2+}+2e^- \rightarrow Cu$ (gai	1 ½ M			

SHRI VIDHYABHARATHI MAT.HR.SEC.SCHOOL, SAKKARAMPALAYAM. 99655-31727

	(OR) Planck's quantum hypothesis:	
	$\mathbf{E} = \mathbf{h}\mathbf{v} - \dots - (1)$	1M
	(ii) Einsteins mass-energy relationship	
	$\mathbf{E} = \mathbf{m}\mathbf{c}^2 - \dots - (2)$	1M
	From (1) and (2)	
	$hv = mc^2$ here $v = c/\lambda$	
	$hc/\lambda = mc^2$	
	$\lambda = \mathbf{h} / \mathbf{mc}(3)$	1M
	The equation 3 represents the wavelength of photons whose momentum is	
	given by mc (Photons have zero rest mass)	
	For a particle of matter with mass m and moving with a velocity v, the	
	equation 3 can be written as	1M
	$\lambda = h / mv$	
	This is valid only when the particle travels at speeds much less than the speed	11.4
	of Light. For a microscopic particle such as an electron and it becomes	1M
	significant.	
	i) An orbital is the region of space around the nucleus within which the	2M
	probability of finding an electron of given energy is maximum.	
	ii) $Ni^{2+}[Ar] 3d^8$ $Fe^{3+}[Ar] 3d^5$	1M
	Half filled and completely filled orbitals are more stable compared to	1M 1M
	partially filled orbitals.	1M 1M
	therefore Fe^{3+} is more stable compared to Ni ²⁺	1111
35	(OR)	
	i) The modern periodic law states that, "the physical and chemical	
	properties of the element are periodic functions of their atomic	2M
	numbers".	
	ii) The total number of electrons are less in the cation than the neutral atom	
	while the nuclear charge remains the same. Therefore the effective nuclear	
	charge of the cation is higher than the corresponding neutral atom. Thus the	3M
	successive ionization energies, always increase in the following order	
	$\mathbf{IE}_1 < \mathbf{IE}_2 < \mathbf{IE}_3 < \dots$	
	i) Beryllium - $1s^2$, $2s^2$	1) (
	Nitrogen $(1s^2, 2s^2, 2p^3)$	1M
	The addition of extra electron will disturb their stable electronic	11.4
	configuration(Half filled & completely filled) and they have almost zero electron affinity.	1M
	ii) Beryllium hydroxide is amphoteric in nature as it reacts with both acid	
	and alkali.	
	$Be(OH)_2 + 2 NaOH \rightarrow Na_2BeO_2 + 2H_2O$	3M
	$Be(OH)_2 + 2HCl \rightarrow BeCl_2 + 2H_2O$	
	(OR)	
36	Covalent (Molecular) hydrides: They are compounds in which hydrogen is	1M
	attached to another element by sharing of electrons.	
	The most common examples of covalent hydrides of non-metals are methane,	1M
	ammonia, water and hydrogen chloride.	
	Covalent hydrides are further divided into three categories, viz.,	
	• electron precise (CH ₄ , C ₂ H ₆ , SiH ₄ , GeH ₄),	2M
	• electron-deficient (B ₂ H ₆) and	
	• electron-rich hydrides (NH ₃ , H ₂ O).	
	Since most of the covalent hydrides consist of discrete, small molecules that	13.6
	have relatively weak intermolecular forces, they are generally gases or	1M
	volatile liquids.	

			
	i) Deuterium can replace reversibly hydrogen in compounds either partially		
	or completely depending upon the reaction conditions.	1M	
	$CH_4 + 2D_2 \rightarrow CD_4 + 2H_2$	1M	
	$2NH_3 + 3D_2 \rightarrow 2ND_3 + 3H_2$		
	ii) 1.Heavy water is widely used as moderator in nuclear reactors as it can	1M	
	lower the energies of fast neutrons		
	2. It is commonly used as a tracer to study organic reaction mechanisms and		
37	mechanism of metabolic reactions	1M	
	3. It is also used as a coolant in nuclear reactors as it absorbs the heat		
	generated.	1M	
	(OR)		
	i) $H=U+PV$	2M	
	$\Delta \mathbf{H} = \Delta \mathbf{U} + \mathbf{P} \Delta \mathbf{V}$		
	$\Delta \mathbf{H} = \Delta \mathbf{U} + \Delta \mathbf{n}(\mathbf{g}) \mathbf{RT}$		
	ii) Lattice energy is defined as the amount of energy required to completely		
	remove the constituent ions from its crystal lattice to an infinite distance. It is	3M	
	also referred as lattice enthalpy.		
	$NaCl(s) \rightarrow Na^{+}(g) + C\Gamma(g) \Delta H_{lattice} = +788 \text{ kJ mol}^{-1}$		
	1 Beryllium chloride forms a dimeric structure like aluminium chloride		
	with chloride bridges. Beryllium chloride also forms polymeric chain		
	structure in addition to dimer. Both are soluble in organic solvents and are strong Lewis acids.		
	 Beryllium hydroxide dissolves in excess of alkali and gives beryllate ion 		
	and $[Be(OH)_4]^{2-}$ and hydrogen as aluminium hydroxide which gives		
	aluminate ion, [Al(OH) ₄] ⁻ .	5M	
	3 Beryllium and aluminum ions have strong tendency to form complexes,	5111	
	$\operatorname{BeF}_{4}^{2-}$, $\operatorname{AlF}_{6}^{3-}$.		
	4 Both beryllium and aluminium hydroxides are amphoteric in nature.		
38	5 Carbides of beryllium (Be ₂ C) like aluminum carbide (Al ₄ C ₃) give		
	methane on hydrolysis.		
	6 Both beryllium and aluminium are rendered passive by nitric acid.		
	(OR)		
	i)The deviation of real gases from ideal behaviour is measured in terms of a		
	ratio of PV to nRT. This is termed as compressibility factor. Mathematically,	2M	
	Z=PV/nRT		
	For ideal gases $PV = nRT$, hence the compressibility factor, $Z = 1$ at all		
	temperatures and pressures.		
	ii)This phenomenon of lowering of temperature when a gas is made to		
	expand adiabatically from a region of high pressure into a region of low	3M	
	pressure is known as Joule- Thomson effect.		

R. PRAKASH M.Sc., B.Ed., DEPARTMENT OF CHEMISTRY SHRI VIDHYABHARATHI MATRIC HR.SEC.SCHOOL SAKKARAMPALAYAM, AGARAM (PO) ELACHIPALAYAM TIRUCHENGODE(TK), NAMAKKAL (DT) PIN-637202 Cell : 8883130833, 9486263513
