SHRI VIDHYABHARATHI MATRIC HR.SEC.SCHOOL

SAKKARAMPALAYAM , AGARAM (PO) ELACHIPALAYAM

TIRUCHENGODE(TK), NAMAKKAL (DT) PIN-637202

Cell : 99655-31727, 94432-31727

QUARTERLY - SEPTEMBER - 2019

STD: XII SUBJECT: PHYSICS

TENTATIVE ANSWER KEY

MARKS: 70

Q.N	SECTION - I		MARKS
	OPTION ANSWER		
1	a)	Straight line	1
2	d)	9 / 16 F	1
3	d)	Energy density	1
4	b)	Resitance of wet hand is low	1
5	b)	0.03 x 10 ⁻³ ms ⁻¹	1
6	b)	50 Hz	1
7	a)	π / 4	1
8	d)	60°	1
9	d)	Infra red rays	1
10	b)	8 mC	1
11	a)	In phase and perpendicular to each other	1
12	c)	q / 2m	1
13	d)	4 x 10 ⁻⁷ T	1
14	d)	zero	1
15	d)	b < d < c < a	1

16	Coulomb forceGravitational forceIt acts between two chargesIt acts between two massesIt can be attractive or repulsiveIt is always attractiveIt is always greater in magnitudeIt is always lesser in magnitudeIt depends on the nature of the mediumIt is independent of the mediumIf charges are in motion, another force called Lorentz force come in to play in addition to Coulomb forceGravitional force is the same whether two masses are at rest or in motion(Each point carries ½ marks)	2
17	$C = \frac{1}{d} = \frac{1}{d}$ $= 221.2 \times 10^{-13} F$ $C = 22.12 \times 10^{-12} F$	1 1
18	Electrical resistivity of a material is defined as the resistance offered to current flow by a conductor of unit length having unit area of cross section.	1 ½
	Its unit is ohm - m	1/2
19	i) $\xi_{eq} = n \xi = 4 \times 5 = 20 V$	1⁄2
	ii) $r_{eq} = 4 \ge 0.5 = 2.0 \Omega$	1/2
	iii) I = $\frac{n\xi}{R+nr} = \frac{4x5}{8+2.0} = 2$ A	1/2
	iv) $V = IR = 2 \times 8 = 16 V$	1⁄2
20	The line integral of magnetic field over a closed loop is $\mu 0$ times net current enclosed by the loop. $\oint_{C} \vec{B}.\vec{dl} = \mu_{\circ}I_{enclosed}$	2
	c (equation only award 1 mark)	
21	First law: Whenever magnetic flux linked with a closed circuit changes, an emf is induced in the circuit.	1

SHRI VIDHYABHARATHI MAT.HR.SEC.SCHOOL, SAKKARAMPALAYAM. 99655-31727

	Second law The magnitude of induced emf in a closed circuit is equal to the time rate of change of magnetic flux linked with the circuit.	1
22	 For a given dimension of the generator, three-phase machine produces higher power output than a single-phase machine. For the same capacity, three-phase alternator is smaller in size when compared to single phase alternator. Three-phase transmission system is cheaper. A relatively thinner wire is sufficient for transmission of three-phase power. (Any two points) 	2
23	 X-rays are used extensively in studying structures of inner atomic electron shells and crystal structures. It is used in detecting fractures, diseased organs, Used to detect formation of bones and stones, observing the progress of healing bones. Further, in a finished metal product, it is used to detect faults, cracks, flaws and holes. 	2
24	$\frac{d\emptyset}{dt} = \frac{d}{dt} (BA)$ $\varepsilon = \frac{0.05 \times (101 - 100) \times 10^{-4}}{dt}$ $= \frac{0.05 \times 10^{-4}}{dt}$ $i = \frac{\epsilon}{R} ; i = \frac{dq}{dt}$ $\frac{\epsilon}{R} = \frac{dq}{dt} \Longrightarrow \frac{0.05 \times 10^{-4}}{dt \times 2} = \frac{dq}{dt}$ $dq = 2.5 \times 10^{-6} C$	1

Q.N	SECTION - III	MARKS
25	Diagram	1
	Rules each point carries ¹ / ₂ marks	2
	(propertie of electric field lines)	
26	B and C are parallel. so $C = 6 + 2 = 8 \mu F$	
	a, b, c and d are in series	
	$\frac{1}{c_s} = \frac{1}{8} + \frac{1}{8} + \frac{1}{8} = \frac{3}{8}$	1
	$C_s = \frac{8}{3} \mu F$	
	Total charge on capacitor $q = C_s V = \frac{8}{3} \ge 9 \ge 10^{-6} = 24 \ \mu C$	
	Charge on Capacitor a, $q_a = CV = 24 \mu C$	1
	$q_a = q_d = 24 \ \mu C$	
	$q_b = 6 \ \mu F \ x \ 3 = 18 \ \mu C$	
	$q_c = 2 \ \mu F \ x \ 3 = 6 \ \mu C$ Potential difference across capacitor a, $V_a = q_a / C_a = \frac{24 \ x \ 10^{-6}}{8 \ x \ 10^{-6}} = 3 \ V$	
	Potential difference across capacitor a, $V_a = q_a / C_a = \frac{18 \times 10^{-6}}{8 \times 10^{-6}} = 3 \text{ V}$ Potential difference across capacitor b, $V_b = q_b / C_b = \frac{18 \times 10^{-6}}{6 \times 10^{-6}} = 3 \text{ V}$	1
	Potential difference across capacitor c, $V_c = q_c / C_c = \frac{6 \times 10^{-6}}{2 \times 10^{-6}} = 3 V$	
	Potential difference across capacitor d, $V_d = q_d / C_d = \frac{24 \times 10^{-6}}{8 \times 10^{-6}} = 3 \text{ V}$	
27		
	$V = \stackrel{+}{\underset{I}{}} \qquad R_1 \underset{R_2}{} \qquad R_2 \underset{V}{} \qquad I_1 \underset{I}{} \underset{I}{\overset{I}} \underset{I} \underset{I}{\overset{I}} \underset{I} \underset{I}{\overset{I}} \underset{I} \underset{I} {I} $	1∕2
	When two or more resistors are connected across the same potential difference, they are said to be	
SHRI VI	DHYABHARATHI MAT.HR.SEC.SCHOOL, SAKKARAMPALAYAM. 99655-31727 Page	4

	•		
	 When two or more resistors are connected across the same potential difference, they are said to be]	
	 In parallel. Let R₁, R₂, R₃ be the resistances of three resistors 		
	 connected in parallel. Let 'V' be the potential difference applied across 	_	
	this combination.In parallel connection,		1
	 Potential difference across each resistance will be the same (V) 		
	 (ii) But current flows through different resistors will be different. 		
	• Let I_1, I_2, I_3 be the currents flow through R_1, R_2, R_3 respectively, then from Ohm's law V V V		
	$I_1 = \frac{V}{R_1} ; I_2 = \frac{V}{R_2} ; I_3 = \frac{V}{R_3}$ • Hence the total current will be,		16
	$I = I_1 + I_2 + I_3 = \frac{V}{R_1} + \frac{V}{R_2} + \frac{V}{R_3}$		10
	$I = V \left[\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \right] (1)$		
	 Let R_p be the equivalent resistance in parallel connection, then, 	۲́	
	$I = \frac{V}{R_P} \qquad \qquad (2)$		
	• From equation (1) and (2), $\frac{V}{R_{p}} = V \left[\frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{2}} \right]$	-	1/2
	$\therefore \qquad \frac{R_{p}}{R_{p}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}}$		
	When resistances are connected in parallel, the	ר ר	
	reciprocal of equivalent resistance is equal to the sum of the reciprocal of the values of resistance of the individual resistor.		1/2
	 The equivalent resistor. The equivalent resistance in parallel connection will be lesser than each individual resistance. 		
5		J	7
28			
			1/2
			72
		7	
			1/2
		_	1½
	• Here, $R_G <$	J	
	Thus an ve and it alw element.		1/2
	 An ideal a. 		
	DHYABHARATHI MAT.HR.SEC.SCHOOL, SAKKARAMPALAYAM. 99655	-31727 Page	

22							S
29	Type of magnetism	Magnetising field is absent (H = 0)	Magnetising field is present $(H \neq 0)$	Magnetisation of the material	Susceptibility	Relative permeability	
	Diamagnetism	Cero magnetic moment)	(Aligned opposite to the field)		Negative	Less than unity	1
	Paramagnetism	 () ()	(Aligned with the field)	M A O O H	Positive and small	Greater than unity	1
	Ferromagnetism	(Net magnetic moment in a domain but random alignment of domains)	(Aligned with the field)		Positive and large	Very large	1
30	EMF ind	duced by chang	ging area end	$\xrightarrow{\times}$ A \uparrow	e coil		
	▲ Con	$\begin{array}{c} \times & \times \\ \times & \times \\ \times & \rightarrow \overrightarrow{\mathbf{B}} (.)$		× rds)	noving		⅓
	witt met The may	h a velocity 'v' tallic frame wor whole arange gnetic field ' \vec{B} ne of the coil inv	towards lef k. emetn is pla 'acting per	t on a rectan	ngular		1
	flux The	a enclos throug change $\frac{d}{\frac{d}{d}}$					1∕2
	emf	s chang f and it i s emf is]	-	1
31	Any six prope	erties (each prop	erty carries ¼	2 mark)			3

32	$V = \frac{1}{\sqrt{\mu\varepsilon}}$ $V = \frac{1}{\sqrt{\mu_0\varepsilon_0}} \times \frac{1}{\sqrt{\mu_r\varepsilon_r}} = C \times \frac{1}{\sqrt{\mu_r\varepsilon_r}}$	1
	$V^{2} = \frac{c^{2}}{\mu_{r}\varepsilon_{r}}$ $= \frac{3 \times 10^{8} \times 3 \times 10^{8}}{1 \times 2.25}$	1
	$= 4 \times 10^{16} \text{ ms}^{-1}$ $v = 2 \times 10^8 \text{ ms}^{-1}$	1
33	$V = \frac{q}{4\pi\varepsilon_0} \left(\frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3} + \frac{1}{r_4} \right)$	1
	$= 9 \times 10^{9} \times 10/3 \times 10^{-9} \times \left(\frac{1}{4\sqrt{2} \times 10^{-2}} + \frac{1}{4\sqrt{2} \times 10^{-2}} + \frac{1}{4\sqrt{2} \times 10^{-2}} + \frac{1}{4\sqrt{2} \times 10^{-2}}\right)$ V = 2.1216 × 10 ³ V	1
Q.N	SECTION - IV	MARKS
Q.N 34 (a)	SECTION - IV	MARKS 1

Co	It consists	
•	fixed on the	
	Pulley 'B' is	
	and anothe	
	A belt mad	
	rubber run:	
•	The pulley	4
	electric mo	1
	Two comb sl	
	fixed near th	
	The comb 'E	
	of $10^4 V$ by	
	The upper c	
1.1.1	of the hollow	
TAZ		
W	orking:	
•	Due to the	
100	between th The positive charges are pushed towards the belt	
	The positive charges are pushed towards the belt	
	and negative charges are attracted towards the	
	comb 'D'	
•	The positive charges stick to the belt and move up.	
•	When the positive charges reach the comb 'E' a	
	large amount of negative and positive charges are	
	induced on either side of comb 'E' due to	
	electrostatic induction.	2
•	As a result, the positive charges are pushed away	
	from the comb 'E' and they reach the outer surface	
	of the sphere.	
•	These positive charges are distributed uniformly	
	on the outer surface of the hollow sphere.	
	At the same time, the negative charges neutralize	
	the positive charges in the belt due to corona	
	discharge before it passes over the pulley.	
•	When the belt descends, it has almost no net	
	charge.	
•	This process continues until the outer surface	
	produces the potential difference of the order of	
	$10^7 V$ which is the limiting value.	
	Beyond this, the charges starts leaking to the	
	surroundings due to ionization of air.	
	It is prevented by enclosing the machine in a gas	
	filled steel chamber at very high pressure.	
A	oplications :	
•	The high voltage produced in this Van de Graff	
	generator is used to accelerate positive ions	
	(protons and deuterons) for nuclear	1/2
	disintegrations and other applications.	
	Branono ana o alor approvidono.	

SHRI VIDHYABHARATHI MAT.HR.SEC.SCHOOL, SAKKARAMPALAYAM. 99655-31727

	Potential due to Potential due to	
	$+q = \frac{1}{4\pi\varepsilon_{\circ}} \frac{q}{r_{1}} \qquad -q = -\frac{1}{4\pi\varepsilon_{\circ}} \frac{q}{r_{2}}$	1/2
	$V = \frac{1}{4\pi\varepsilon_a} q \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$	
	$r_{1}^{2} = r^{2} \left(1 - 2a \frac{\cos \theta}{r} \right)$ $r_{1}^{2} = r^{2} + a^{2} - 2ra \cos \theta$	1/2
	$r_{1} = r \left(1 - \frac{2a}{r} \cos \theta \right)^{\frac{1}{2}} r_{1}^{2} = r^{2} \left(1 + \frac{a^{2}}{r^{2}} - \frac{2a}{r} \cos \theta \right)$	
	$\frac{1}{r_1} = \frac{1}{r} \left(1 - \frac{2a}{r} \cos \theta \right)^{-\frac{1}{2}} \qquad \frac{1}{r_1} = \frac{1}{r} \left(1 + \frac{a}{r} \cos \theta \right)$	
	$r_2^2 = r^2 \left(1 + \frac{2a\cos\theta}{r} \right) \qquad r_2^2 = r^2 + a^2 - 2ra\cos(180 - \theta)$ $\cos(180 - \theta) = -\cos\theta \text{ we get}$	
	$r_{2} = r \left(1 + \frac{2a\cos\theta}{r}\right)^{\frac{1}{2}}$ $r_{2}^{2} = r^{2} + a^{2} + 2ra\cos\theta$	1
	$1 \left(1 \left(-\cos \theta\right) \right) 1 \left(-\cos \theta \left(1 \left(-\cos \theta \right) \right) \right)$	1
	$V = \frac{1}{4\pi\varepsilon_{e}} q \left(\frac{1}{r} \left(1 + a \frac{\cos\theta}{r} \right) - \frac{1}{r} \left(1 - a \frac{\cos\theta}{r} \right) \right)$	
	$V = \frac{q}{4\pi\varepsilon_{*}} \left(\frac{1}{r} \left(1 + a\frac{\cos\theta}{r} - 1 + a\frac{\cos\theta}{r} \right) \right)$	1
	$V = \frac{1}{4\pi\varepsilon_{*}} \frac{2aq}{r^{2}} \cos\theta$	
	$V = \frac{1}{4\pi\varepsilon_a} \frac{\vec{p} \cdot \hat{r}}{r^2}$	805
		1/2
35 (b)	DIAGRAM	1/2
	EXPLANATION	1/2
	$\begin{split} {\rm I}_{_1} - {\rm I}_{_{\rm G}} - {\rm I}_{_3} &= 0 \\ {\rm I}_{_2} + {\rm I}_{_{\rm G}} - {\rm I}_{_4} &= 0 \end{split}$	1
	$I_1P + I_GG - I_2R = 0$ $I_1P + I_3Q - I_4S - I_2R = 0$	1
	$I_{c} = 0$	1/2
	$I_1 = I_3$	72
	$\mathbf{I}_2 = \mathbf{I}_4$	
	$I_1 P = I_2 R$ $I_1 P + I_1 Q - I_2 S - I_2 R = 0$	1/2
	$I_1 P + I_1 Q - I_2 S - I_2 R = 0$ $I_1 (P + Q) = I_2 (R + S)$	

$$\begin{bmatrix} 37\\ (a) \end{bmatrix}$$

$$\begin{bmatrix} 1\\ (a) \end{bmatrix}$$

$$\begin{bmatrix} \cdot & \text{The rep} \\ (i.e) \text{ ma} \\ \hline B_N = \end{bmatrix}$$

$$\begin{bmatrix} \cdot & \text{The attractive force experienced by unit north pole} \\ (i.e.) \text{ magnetic field at 'C' due to south pole} \\ \hline B_S = \frac{\overline{F}_S}{\overline{q}_{m_C}} = -\frac{\mu_o}{4\pi} \frac{q_m}{(r+1)^2} \hat{i} \qquad ----(2) \\ \hline S = \overline{B}_{rest} = \overline{B}_N + \overline{B}_S \\ = \frac{\mu_o}{4\pi} \frac{q_m}{(r-1)^2} \hat{i} + \left[-\frac{\mu_o}{4\pi} \frac{q_m}{(r+1)^2} \hat{i} \right] \\ = \frac{\mu_o}{4\pi} q_m \left[\frac{1}{(r-1)^2} - \frac{1}{(r+1)^2} \right] \hat{i} \\ = \frac{\mu_o}{4\pi} q_m \left[\frac{r^2 + l^2 + 2r l - r^2 - l^2 + 2r l}{(r-1)(r+1)^2} \right] \hat{i} \\ = \frac{\mu_o}{4\pi} q_m \left[\frac{r^2 + l^2 + 2r l - r^2 - l^2 + 2r l}{(r-1)(r+1)^2} \right] \hat{i} \\ = \frac{\mu_o}{4\pi} q_m \frac{r^2 - l^2 p_m}{(r^2 - l^2)^2} \hat{i} \\ = \frac{\mu_o}{4\pi} \frac{2r (q_m 2l)}{(r^2 - l^2)^2} \hat{i} \\ = \frac{\mu_o}{4\pi} \frac{2r (q_m 2l)}{(r^2 - l^2)^2} \hat{i} \\ B_{axis} = \frac{\mu_o}{4\pi} \frac{2r p_m}{r^4} \hat{i} \\ B_{axis} = \frac{\mu_o}{4\pi} \frac{2r p_m}{r^4} \hat{i} \\ B_{axis} = \frac{\mu_o}{4\pi} \frac{2r p_m}{r^3} \hat{i} \qquad [p_m \hat{i} = \tilde{p}_m] \\ B_{axis} = \frac{\mu_o}{4\pi} \frac{2r p_m}{r^3} \hat{i} \qquad [p_m \hat{i} = \tilde{p}_m] \end{bmatrix}$$

5) 		
	This circuit (iii) When $X_L =$ means that (<i>i.e.</i>) $v =$ This circuit	1
38 (b)		1
		1
	(ii) Line c Li SI di	
	 The line spectr are sharp lines of definite wavelengths or frequencies. It is different for different elements (e.g.) spectra of atomic hydrogen, helium, 	1 ½
	etc (iii) <u>Band emission spectra</u> : The light from excited molecules gives band spectrum. It consists of several number of very closely spaced spectral lines which overlapped together forming specific	1 ½
	 coloured bands. This spectrum has a sharp edge at one end and fades out at the other end. Band spectrum is the characteristic of the molecule. (e.g.) spectra of hydrogen gas, ammonia gas in the discharge tube, etc 	

	Department of Physics shri vidhyabharathi matric hr.sec.schoo sakkarampalayam, agaram (po) elachipalay	
	TIRUCHENGODE(TK), NAMAKKAL (DT) PIN-637 Cell : 98423-11320, 91596-79535, 97862-92701.	