SHRI KRISHNA ACADEMY

BOARD EXAM (10,+1,+2) ,NEET AND JEE COACHING CENTRE SBM SCHOOL CAMPUS,TRICHY MAIN ROAD,NAMAKKAL CELL:9965531727-9443231727

+2 COMMON QUARTERLY EXAMINATION - SEP - 2019

Tentative answer key

SUBJECT: CHEMISTRY

MARKS: 70

Q.NO	CONTENT	MARKS
I.	SECTION-I CHOOSE THE CORRECT ANSWER:	
1	c)3.87BM	1
2	a)four (2c-2e) and two (3c-2e)	1
3	b)Al <ga<in<tl< td=""><td>1</td></ga<in<tl<>	1
4	b)F ₂	1
5	a)PH ₃	1
6	b)Zn	1
7	d)In the metallurgy of gold ,the metal is leached with dilute NaCl solution	1
8	a)Both assertion and reason are true and reason is correct explanation of assertion	1
9	b)0	1
10	b)K[Pt Cl ₃ (C ₂ H ₄)]	1
11	b)848.5pm	1
12	c)Molecular solid	1
13	c)120 min	1
14	a)First order	1
15	b)Activation energy	1

Q.NO	SECTION - II	6x2=12
	 Fluorine is most electronegative thus it is more reactive among the halogens. 	2
16	 This is due to the minimum value of F-F bond dissociation energy 	
	$Gd^{3+}=$ [Xe] $4f^7 5d^0 =$ colourless	
17	d^0 , d^{10} electronic configuration $% d^{10}$ have no unpaired	2
	electron so it is colourless	
	[Co (NH ₃)Cl] SO ₄ and [Co(NH ₃) SO ₄]Cl are ionisation	
	isomers.	
	$[Co (NH_3)Cl] SO_4 +BaCl_2 \rightarrow BaSO_4$	1
18	(white precipitate)	1
	$[Co(NH_3) SO_4]Cl+BaCl_2 \rightarrow No reaction$	
	$[Co(NH_3) SO_4]Cl+AgNO_3 \longrightarrow AgCl$	
	(curdy white precipitate)	
	Ag ₂ O and HgO undergo self reduction:	
	Ellingham diagram for the formation of Ag ₂ O and HgO	
	is at upper part of the diagram and their	
19	decomposition temperatures are 600 and 700 K	1
19	respectively.	1
	 It indicates that these oxides are unstable at moderate 	
	temperatures and will decompose on heating even in	
	the absence of a reducing agent.	
	Graphite :	1
	 It is composed of flat two dimensional sheets of 	
20	carbon atoms. Each sheet is a hexagonal net of sp2	
20	hybridised carbon atoms with a C-C bond length of	
	1.41 Å which is close to the C-C bond distance in	
	benzene (1.40 Å).	

	\clubsuit Each carbon atom forms three σ bonds with three	4
	neighbouring carbon atoms using three of its valence	1
	electrons and the fourth electron present in the	
	unhybridised p orbital forms a π -bond.	
	Diamond:	
	The carbon atoms in diamond are sp3 hybridised	
	and bonded to four neighbouring carbon atoms by	
	σ bonds with a C-C bond length of 1.54 Å.	
	This results in a tetrahedral arrangement around	
	each carbon atom that extends to the entire lattice.	
	Uses of Potash Alum:	
	 It is used for purification of water. 	0
21	Production Production of the second sec	2
	 It is used in dyeing, paper and leather tanning industries 	
	In a body centered cubic lattic atom touch along the body	
	diagonal of the cube. Thus	1
	$4r = \sqrt{3a}$	Ĩ
22	$r = \int_{-\frac{3}{2}}^{\frac{3}{2}} a$	
	$\sqrt{\frac{4}{2}}$	1
	$=(\sqrt{\frac{3}{4}}) (4.29A^{\circ}) = 1.86 A^{\circ}$	
	Limitations of VB theory:	
	It does not explain the colour of the complex	
	It considers only the spin only magnetic moments and	
	does not consider the other components of magnetic	
	moments.	
23	moments.	2
	It does not provide a quantitative explanation as to	
	why certain complexes are inner orbital complexes	
	and the others are outer orbital complexes for the	
	same metal. For example, [Fe(CN) ₆] ⁴⁻ is diamagnetic	

	(low spin) whereas [FeF ⁶] ⁴⁻ is paramagnetic (high spin).	
24	Proper allignment A + B + B + A + B + B + A + B + A + B + A + B + B + A + B + A + B + B + A + A + A + B + A	1
Q.NO	SECTION-III	6X3=18
	Classification of molecular solid with example:	
	Non-polar molecular solids	1
	Examples: naphthalene, anthracene etc.,	
	Polar molecular solids	1
	Examples are solid CO_2 , solid NH_3 etc.	
25	Hydrogen bonded molecular solids	1
	Examples: solid ice (H_2O), glucose, urea etc.,	
	i)Cryolite in the extraction of aluminium.	11/2
	Lowers the melting point of the mixture	11/2
	ii)Iodine in the refining of Zirconium.	
	To form a volatile compound which further heating	
26	decomposes to give pure Zn.	
	$\operatorname{Zr} + 2\operatorname{I}_2 \rightarrow \operatorname{ZrI}_4 \xrightarrow{\Delta} \operatorname{Zr} + 2\operatorname{I}_2$	

27	i) 2B + 6NaOH \rightarrow 2Na ₃ BO ₃ + 3H ₂	1 _{1/2} 1 _{1/2}
	ii) $2SiCl_4 + NH_3 \xrightarrow{330K} Cl_3Si - NH - SiCl_3 + 2HCl$	
28	Let $[A_{0}] = 100;$ when t = t _{99,9%} ; [A] = (100-99.9) = 0.1 $k = \frac{2.303}{t} \log\left(\frac{[A_{0}]}{[A]}\right)$ t _{99,9%} = $\frac{2.303}{k} \log\left(\frac{100}{0.1}\right)$ t _{99,9%} = $\frac{2.303}{k} \log 1000$ t _{99,9%} = $\frac{2.303}{k} (3)$ t _{99,9%} = $\frac{6.909}{k}$ t _{99,9%} $\approx 10 \times \frac{0.69}{k}$ t _{99,9%} $\approx 10 t_{\frac{1}{2}}$	3
	Compare lanthanide and actinide:s.noLanthanoidsActinoids	
	1electronentersin4felectronentersin5f	—
	orbital orbital	
29	2Binding energy of 4f orbitals are higherBinding energy of orbitals are lower	5f 3
	3less tendency to form complexesgreater tendency to form complexes	

	4	Most of the lanthanoids	Most of the actinoids	
		are colourless	are coloured. For	
			example.	
			U^{3+} (red), U^{4+} (green),	
			UO_2^{2+} (yellow)	
	5	They do not form oxo		
	5	cations	cations such as	
		cations		
			$UO_2^{2+} NpO_2^{2+}$, etc	
	Dehy	drating property of sulphur	ic acid :	
		The dehydrating prope	erty can also be	
		illustrated by its reacti	on with organic	
		compounds such as sug	gar, oxalic acid and	
		formic acid.		3
30				
		$C_{12}H_{22}O_{11} + H_2SO_4 \longrightarrow 12C$ Sucrose	$C + H_2 SO_4.11 H_2 O$	
		$\underset{\text{Formic acid}}{\text{HCOOH}} + \text{H}_2\text{SO}_4 \longrightarrow \text{CO} +$	+ H ₂ SO ₄ .H ₂ O	
		$(\underbrace{\text{COOH}}_{\text{Oxalic acid}})_2 + \operatorname{H}_2 \operatorname{SO}_4 \longrightarrow \operatorname{CO}^+$	$+ \mathrm{CO}_2 + \mathrm{H}_2\mathrm{SO}_4.\mathrm{H}_2\mathrm{O}$	
	Fe ³⁺	is more stable than Fe ^{2+:}		
		The electronic configuration	of Fe is [Ar] 3d ⁶ 4s ²	3
		Fe ²⁺ = [Ar] 3d ⁶		
31		Fe ³⁺ = [Ar] 3d ⁵		
	На	lf filled d shell which is high	y stable. So Fe ³⁺ is more	
	sta	able than Fe ²⁺		

	s.no	Order of a reaction	Molecularity of a reaction	
	1	It is the sum of the	It is the number of	
		powers of	reactant species that are	
		concentration terms	involved in an	
		involved in the	elementary step.	110
		experimentally	ciementary step.	112
32		determined rate law.		11/2
	2	It can be zero (or)	It is always a whole	
		fractional (or) integer	number , cannot be zero	
			or a fractional number	
	3	It is assigned for a	It is assigned for each	
		overall reaction.	elementary step of	
			mechanism.	
	i)N	a2 [Ni (EDTA)]		
			-(ethane-1,2-diyldinitrilo)	1
	ii) [(tetraacetatonickela Co (en)3]2 (SO 4)3	ate(II)	1
33	Tris (ethane1,2 diamine) Cobalt(III) sulphate			1
	iii)	[Pt (NH ₃) ₂ Cl (NO ₂)]	withits IN Distingue (II)	
			onitrito- <i>kN Platinum(II)</i>	1
Q.NO	2)i) 0	SE(oservations of Ellingha	CTION-IV m diagram.	5X5=2
		•	oxide formation, the slope is	
	1	positive. It can be explai	ined as follows. Oxygen gas is	
	(consumed during the for	rmation of metal oxides which	
	r	results in the decrease	e in randomness. Hence, ΔS	
34	ł	pecomes negative and it	makes the term, $\ensuremath{T\Delta S}$ positive	
	i	in the straight line equat	ion.	3

- The graph for the formation of carbon monoxide is a straight line with negative slope. In this case ΔS is positive as 2 moles of CO gas is formed by the consumption of one mole of oxygen gas. It indicates that CO is more stable at higher temperature.
- As the temperature increases, generally ΔG value for the formation of the metal oxide become less negative and becomes zero at a particular temperature. Below this temperature, ΔG is negative and the oxide is stable and above this temperature ΔG is positive. This general trend suggests that metal oxides become less stable at higher temperature and their decomposition becomes easier.
- There is a sudden change in the slope at a particular temperature for some metal oxides like MgO, HgO. This is due to the phase transition (melting or evaporation).

ii) Idetification of borate radical:

- When boric acid or borate salt is heated with ethyl alcohol in presence of conc. sulphuric acid, an ester, trialkylborate is formed.
- The vapour of this ester burns with a green edged flame and this reaction is used to identify

 $H_3BO_3 + 3C_2H_5OH \xrightarrow{Conc.} B(OC_2H_5)_3 + 3H_2O$ the

presence of borate.

2

	b)i)Integerated equation for a zero order :	
	$A \rightarrow \text{product}$	
	A reaction in which the rate is independent of the concentration of the reactant over a wide range of concentrations is called as zero order reactions. The rate law can be written as, Rate = k [A] ⁰	1
	$-d \frac{[A]}{dt} = k (1) \qquad ([A]^{0} = 1)$	1
	-d[A] = k dt	1
	Integrate the above equation between the limits of [A] ⁰ at zero time and [A] at some later time 't',	
OR	$-\int_{A_0}^{[A]} \mathbf{d}[\mathbf{A}] = \mathbf{k} \int_0^t dt$	
	- ([A]) ^[A] _{[A]0} = k (t) ^t ₀	
	Equation (2) is in the form of a straight line $y = mx + c$	
	Ie., $[A] = -kt + [A_0]$	
	\Rightarrow y = c + mx	1
	A plot of [A] Vs time gives a straight line with a slope of $-k$ and y - intercept of [A ₀].	Ĩ
	ii) Inert pair effect:	
	The less availability of ns electron in bonding	
	which is known as inert pair effect.	2
	a) i) The number of Fe ²⁺ ions in the crystal be x The number of Fe ³⁺ ions in the crystal be y Total number of Fe ²⁺ and Fe ³⁺ ions is $x + y$ given that $x + y = 0.93$ the total charge =0	
	x(2+) + (0.93-x)(+3) - 2 = 0	3
35	2x + 2.97 - 3x - 2 = 0	
	x = 0.79	
	Percentage of Fe ³⁺ = $\left(\frac{(0.93 - 0.79)}{(0.93)}\right)$ 100 = 15.05%	

	ii) Pseudo first order reaction	on: eaction can be altered to a first	
		taking one of the reactant in	
		reaction is called pseudo first	1
	order reaction.	reaction is called pseudo inst	
	 Let us consider the 	acid hydrolysis of an ester,	
		$\xrightarrow{H^*} CH_3COOH (aq) + CH_3OH (aq)$ $CH_3COOCH_3] [H_2O]$	1
	b)i) Schottky defect:		
	i)Schottky defect arise	es due to the missing of equal	1
	number of cations and	d anions from the crystal	-
	lattice.		1
	ii)This effect does not o	change the stoichiometry of the	1
	crystal.		
	iii)Ionic solids in whic almost of similar size sl	ch the cation and anion are of now schottky defect.	
	iv) presence of large r crystal it also lowers th	number of schottky defect in a ne density	
OR	Example: NaCl.		1
	ii) Differentiate mineral and	l ore:	
	MINERALS	ORES	
	A naturally occurring substance obtained by mining which contains the metal in free state or in the	minerals that contains a high percentage of metal from which metal can be extracted conveniently and	
	form of compounds like oxides, sulphides etc is	economically.	1
	called a mineral .		1
	All minerals are not ores	All ores are minerals	

	a) Zeolites:	
	 Zeolites: Zeolites are three-dimensional crystalline solids containing aluminium, silicon, and oxygen in their regular three dimensional framework. They are hydrated sodium alumino silicates with general formula 	1
	NaO.(Al ₂ O ₃).x(SiO ₂).yH ₂ O (x=2 to 10; y=2 to 6).	T
36	 Structure: Zeolites have porous structure in which the monovalent sodium ions and water molecules are loosely held. 	1
	• The Si and Al atoms are tetrahedrally coordinated with each other through shared oxygen atoms.	1
	 Zeolites have a three dimensional crystalline structure looks like a honeycomb consisting of a network of interconnected tunnels and cages. Water molecules moves freely in and out of these 	1
	pores but the zeolite framework remains rigid. Another special aspect of this structure is that the pore/channel sizes are nearly uniform, allowing the crystal to act as a molecular sieve.	
	b) i) Inter halogen compounds:	
	Each halogen combines with other halogens to form a series of compounds called interhalogen compounds.	2
	Ex: ClF , ClF ₃ , IF ₄	
	Properties(Any two):	
	The central atom will be the larger one	
OR	It can be formed only between two halogen and not more than two halogens.	
	 Fluorine can't act as a central metal atom being the smallest one Due to high electronegativity with small size fluorine helps the central atom to attain high coordination number 	1

	They are strong oxidizing agents	
	ii) Uses of Helium:	
	i) Helium and oxygen mixture is used by divers in place of	
	air oxygen mixture. This prevents the painful dangerous	1
	condition called bends.	1
	iiHelium is used to provide inert atmosphere in electric arc	1
	welding of metals	1
	a) Packing efficiency:	
	The percentage of total volume occupied by these	
	constituent spheres gives the packing efficiency of an	1
	arrangement. Let us calculate the packing efficiency in	T
	simple cubic arrangement.	
	{ packing fraction (or) efficiency}	
	$= \frac{Total \ volume \ occupied \ by \ spheres \ in \ a \ unit \ cell}{Volume \ of \ the \ unit \ cell} \ge 100$	
	Here, the spheres are touching along the leading diagonal of	
	the cube as shown in the figure	
	In ΔABC	
37	$AC^2 = AB^2 + BC^2$	
	$AC = \sqrt{AB^2 + BC^2}$	
	AC = $\sqrt{a^2 + a^2} = \sqrt{2a^2}$	
	$=\sqrt{2a}$	
	In ⊿ACG	
	$AG^2 = AC^2 + CG^2$	
	$AG = \sqrt{AC^2 + CG^2}$	
	$AG = \sqrt{(\sqrt{2a})^2 + a^2}$	2
	$AG = \sqrt{2a^2 + a^2} = \sqrt{3a^2}$	
	$AG = \sqrt{3a}$	

Γ		
	i.e., $\sqrt{3a} = 4r$	
	$r = \sqrt{\frac{3}{4}} a$	
	\therefore Volume of the sphere with radius 'r'	
	$=\frac{4}{3}\pi r^3$	
	$=\frac{4}{3}\pi (\frac{\sqrt{3}}{4} \alpha)^3$	
	$=\frac{\sqrt{3}}{16}\pi a^3$ (1)	
	Number of spheres belong to a unit cell in bcc	
	arrangement is equal to two and	
	hence the total volume of all spheres	
	$= 2 \times \left(\frac{\sqrt{3 \pi a^3}}{16}\right) = \frac{\sqrt{3 \pi a^3}}{8}$	
	Dividing (2) by (3) $\sqrt{3\pi a^3}$	
	Packing fraction = $\frac{\frac{\sqrt{3\pi a^3}}{8}}{(a)^3} \times 100$	
	$=\frac{\sqrt{3\pi}}{8}\times 100$	
	$=\sqrt{3\pi} \times 12.5$	
	= 1.732 × 3.14 ×12.5	
	= 68 %	
	b)i) Bleaching action of Chlorine:	
	Chlorine is a strong oxidising and bleaching agent because of	
	the nascent oxygen.	
	$H_2O + Cl_2 \longrightarrow HCl + HOCl_{Hypo chlorous acid}$	1 1⁄2
	$HOC1 \longrightarrow HC1 + (O)$	
OR	Colouring matter + Nascent oxygen —Colourless oxidation product	
	The bleaching of chlorine is permanent.	
	It oxidises ferrous salts to ferric, sulphites to sulphates	
	and hydrogen sulphide to sulphur.	
	1	

	$2 \text{FeCl}_2 + \text{Cl}_2 \longrightarrow 2 \text{FeCl}_3$	1 1/2
	$Cl_2 + H_2O \longrightarrow HCl + HOCl$	
	ii) d-block elements form complexes:	
	✤ Transition elements have a tendency to form	
	coordination compounds with a species that has an	
	ability to donate an electron pair to form a coordinate	
	covalent bond.	
	✤ Transition metal ions are small and highly charged	
	and they have vacant low energy orbitals to accept an	
	electron pair donated by other groups. Due to these	2
	properties, transition metals form large number of	
	complexes.	
	Examples: [Fe(CN)6]4-, [Co(NH3)6]3+, etc	
	a) Postulates of Crystal field theory:	
	1. Crystal Field Theory (CFT) assumes that the bond	
	between the ligand and the central metal atom is purely ionic. i.e. the bond is formed due to the electrostatic	
	attraction between the electron rich ligand and the	
	electron deficient metal.	
	2. In the coordination compounds, the central metal	2
	atom/ion and the ligands are considered as point charges	
	(in case of charged metal ions or ligands) or electric	
	dipoles (in case of neutral metal atoms or ligands). 3. According to crystal field theory, the complex formation is	
	considered as the following series of hypothetical steps.	
	Step 1: In an isolated gaseous state, all the five d orbitals of	
38	the central metal ion are degenerate. Initially, the ligands	
50	form a spherical field of negative charge around the metal.	1
	In this filed, the energies of all the five d orbitals will increase due to the repulsion between the electrons of the	1
	metal and the ligand.	
	Step 2: The ligands are approaching the metal atom in	
	actual bond directions. To illustrate this let us consider an	
	octahedral field, in which the central metal ion is located at	1
	the origin and the six ligands are coming from the +x, -x, +y, - y, +z and -z directions as shown below.	T
	The orbitals lying along the axes dx2-y2 and dz2 orbitals	
	will experience strong repulsion and raise in energy to a	
	greater extent than the orbitals with lobes directed between	
	the axes (dxy, dyz and dzx).	

SHRI KRISHNA ACADEMY

CREATIVE QUESTIONS
 ONE MARKS, TWO MARKS, THREE MARKS AND FIVE MARKS AVAILABLE IN ALL SUBJECTS

 MATERIALS(GUIDE)

X - STD , XI - STD, XII - STD AVAILABLE IN ALL SUBJECTS

- FULL TEST QUESTION PAPERS
 X STD, XI STD, XII STD AVAILABLE IN ALL SUBJECTS
- ✓ ONE MARK TEST QUESTION PAPER for X, XI, XII AVAILABLE in ALL SUBJECTS.

→ For MORE DETAILS - 99655 31727 , 94432 31727