SAMPLE QUESTION PAPER MARKING SCHEME SUBJECT: MATHEMATICS- STANDARD CLASS X

SECTION - A

1	(c) 35	1
2	(b) $x^2 - (p+1)x + p = 0$	1
3	(b) 2/3	1
4	(d) 2	1
5	(c) (2,-1)	1
6	(d) 2:3	1
7	(b) tan 30°	1
8	(b) 2	1
9	(c) $x = \frac{ay}{a+b}$	1
10	(c) 8cm	1
11	(d) $3\sqrt{3}$ cm	1
12	(d) $9\pi {\rm cm}^2$	1
13	(c) 96 cm^2	1
14	(b) 12	1
15	(d) 7000	1
16	(b) 25	1
17	(c) 11/36	1
18	(a) 1/3	1
19	(b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A)	1
20.	(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A)	1

SECTION – B

21	Adding the two equations and dividing by 10, we get : $x+y = 10$	1/2
	Subtracting the two equations and dividing by -2, we get : $x-y = 1$	1/2
	Solving these two new equations, we get, $x = 11/2$	1⁄2
	y = 9/2	1⁄2
22	In $\triangle ABC$,	
<u> </u>	$\angle 1 = \angle 2$	
	$\therefore AB = BD$ (i)	1⁄2
	Given,	
	AD/AE = AC/BD	1/2
	Using equation (i), we get AD/AE = AC/AB(ii)	72
	In \triangle BAE and \triangle CAD, by equation (ii),	
	AC/AB = AD/AE	1⁄2
	$\angle A = \angle A \text{ (common)}$	17
	$\therefore \Delta BAE \sim \Delta CAD$ [By SAS similarity criterion]	1/2
23	$\angle PAO = \angle PBO = 90^{\circ}$ (angle b/w radius and tangent)	1⁄2
	$\angle AOB = 105^{\circ}$ (By angle sum property of a triangle)	1⁄2
	$\angle AQB = \frac{1}{2} \times 105^{\circ} = 52.5^{\circ}$ (Angle at the remaining part of the circle is half the	1
	angle subtended by the arc at the centre)	

24	We know that, in 60 minutes, the tip of minute hand moves 360°				
	In 1 minute, it will move $=360^{\circ}/60 = 6^{\circ}$	1⁄2			
	: From 7:05 pm to 7:40 pm i.e. 35 min, it will move through = $35 \times 6^\circ = 210^\circ$	1⁄2			
	: Area of swept by the minute hand in 35 min = Area of sector with sectorial angle θ				
	of 210° and radius of 6 cm				
	$=\frac{210}{360}$ x π x 6^2	1⁄2			
	7 33				

$$= \frac{1}{360} x \pi x 6^{2}$$

$$= \frac{1}{12} x \frac{1}{7} x 6 x 6$$

$$= 66 \text{cm}^{2}$$

$$\frac{1}{2} x \frac{1}{7} x 6 x 6$$

OR

Let the measure of $\angle A$, $\angle B$, $\angle C$ and $\angle D$ be θ_1 , θ_2 , θ_3 and θ_4 respectively Required area = Area of sector with centre A + Area of sector with centre B + Area of sector with centre C + Area of sector with centre D

$$= \frac{\theta_1}{360} \times \pi \times 7^2 + \frac{\theta_2}{360} \times \pi \times 7^2 + \frac{\theta_3}{360} \times \pi \times 7^2 + \frac{\theta_4}{360} \times \pi \times 7^2$$
^{1/2}

$$= \frac{(\theta_1 + \theta_2 + \theta_3 + \theta_4)}{360} \times \pi \times 7^2$$

= $\frac{(360)}{360} \times \frac{22}{7} \times 7 \times 7$ (By angle sum property of a triangle) $\frac{1}{2}$
= 154 cm² $\frac{1}{2}$

25	sin(A+B) = 1 = sin 90, so $A+B = 90$ (i)	1/2
	$\cos(A-B) = \sqrt{3/2} = \cos 30$, so $A-B = 30$ (ii)	1/2
	From (i) & (ii) $\angle A = 60^{\circ}$	1/2
	And $\angle B = 30^{\circ}$	1/2

OR

$\frac{\cos\theta - \sin\theta}{1 - \sqrt{3}} = \frac{1 - \sqrt{3}}{1 - \sqrt{3}}$	
$\frac{1}{\cos\theta + \sin\theta} = \frac{1}{1 + \sqrt{3}}$	
Dividing the numerator and denominator of LHS by $\cos\theta$, we get	1/2
$\frac{1-\tan\theta}{2}=\frac{1-\sqrt{3}}{2}$	1/2
$\frac{1}{1+\tan\theta} = \frac{1}{1+\sqrt{3}}$	
Which on simplification (or comparison) gives $\tan\theta = \sqrt{3}$	1/
Or $\theta = 60^{\circ}$	1/2
	1/2

SECTION - C

26	Let us assume $5 + 2\sqrt{3}$ is rational, then it must be in the form of p/q where p and q are co-prime integers and $q \neq 0$	1
	i.e $5 + 2\sqrt{3} = p/q$ So $\sqrt{3} = \frac{p-5q}{2q}$ (i)	1⁄2
	·	1⁄2
	Since p, q, 5 and 2 are integers and $q \neq 0$, HS of equation (i) is rational. But LHS of (i) is $\sqrt{3}$ which is irrational. This is not possible.	1⁄2

1⁄2

This contradiction has arisen due to our wrong assumption that $5 + 2\sqrt{3}$ is rational. So, $5 + 2\sqrt{3}$ is irrational.

27 Let α and β be the zeros of the polynomial $2x^2 - 5x - 3$	
Then $\alpha + \beta = 5/2$	1/2
And $\alpha\beta = -3/2$.	1/2
Let 2α and 2β be the zeros $x^2 + px + q$	
Then $2\alpha + 2\beta = -p$	1/2
$2(\alpha + \beta) = -p$	
$2 \ge 5/2 = -p$	
So p = -5	1⁄2
And $2\alpha \ge 2\beta = q$	1⁄2
$4 \alpha \beta = q$	
So $q = 4 x - 3/2$	
= -6	1⁄2

28	Let the actual speed of the train be x km/hr and let the actual time taken be y hours.	
	Distance covered is xy km	1⁄2
	If the speed is increased by 6 km/hr, then time of journey is reduced by 4 hours i.e.,	
	when speed is $(x+6)$ km/hr, time of journey is $(y-4)$ hours.	
	$\therefore \text{ Distance covered } = (x+6)(y-4)$	
	$\Rightarrow xy=(x+6)(y-4)$	
	$\Rightarrow -4x+6y-24=0$	1/2
	$\Rightarrow -2x+3y-12=0$ (i)) 2
	Similarly $xy=(x-6)(y+6)$	
	⇒6x-6y-36=0	
	⇒x-y-6=0(ii)	1/2
	Solving (i) and (ii) we get x=30 and y=24	1
	Putting the values of x and y in equation (i), we obtain	
	Distance = (30×24) km =720km.	1/2
	Hence, the length of the journey is 720km.	/2
	OR	
	Let the number of chocolates in lot A be x	1/2
	And let the number of chocolates in lot B be y	
	∴ total number of chocolates =x+y Price of 1 chocolate = ₹ 2/3, so for x chocolates $=\frac{2}{3}x$	
	and price of y chocolates at the rate of $\mathbf{\xi}$ 1 per chocolate =y. \therefore by the given condition $\frac{2}{3}x + y = 400$	
	$\Rightarrow 2x+3y=1200 \dots (i)$ Similarly $x+\frac{4}{5}y = 460$	1/2
	$\Rightarrow 5x + 4y = 2300$ (ii)	1⁄2
	Solving (i) and (ii) we get	
	x=300 and $y=200$	
	∴x+y=300+200=500	1
	So, Anuj had 500 chocolates.	14
29		1/2 1/2
47	LHS: $\frac{\sin^3\theta}{\cos^2\theta} + \frac{\cos^3\theta}{1+\cos^2\theta} + \frac{\cos^3\theta}{\sin^2\theta}$	12

29 LHS:
$$\frac{\sin^3\theta/\cos^3\theta}{1+\sin^2\theta/\cos^2\theta} + \frac{\cos^3\theta/\sin^3\theta}{1+\cos^2\theta/\sin^2\theta}$$

$$= \frac{\sin^{3}\theta/\cos^{3}\theta}{(\cos^{2}\theta + \sin^{2}\theta)/\cos^{2}\theta} + \frac{\cos^{3}\theta/\sin^{3}\theta}{(\sin^{2}\theta + \cos^{2}\theta)/\sin^{2}\theta}$$

$$= \frac{\sin^{3}\theta}{\cos\theta} + \frac{\cos^{3}\theta}{\sin\theta}$$

$$= \frac{\sin^{4}\theta + \cos^{4}\theta}{\cos\theta\sin\theta}$$

$$= \frac{(\sin^{2}\theta + \cos^{2}\theta)^{2} - 2\sin^{2}\theta\cos^{2}\theta}{\cos\theta\sin\theta}$$

$$= \frac{1 - 2\sin^{2}\theta\cos^{2}\theta}{\cos\theta\sin\theta}$$

$$= \frac{1 - 2\sin^{2}\theta\cos^{2}\theta}{\cos\theta\sin\theta}$$

$$= \frac{1 - 2\sin^{2}\theta\cos^{2}\theta}{\cos\theta\sin\theta}$$

$$= \sec^{2}\theta\cos^{2}\theta$$

R Let ABCD be the rhombus circumscribing the circle with centre O, such that AB, BC, CD and DA touch •0 the circle at points P, Q, R and S respectively. We know that the tangents drawn to a circle from an exterior point are equal in length. Р A B $\therefore AP = AS....(1)$ BP = BQ....(2) 1 CR = CQ(3) $DR = DS \dots (4).$ Adding (1), (2), (3) and (4) we get AP+BP+CR+DR = AS+BQ+CQ+DS(AP+BP) + (CR+DR) = (AS+DS) + (BQ+CQ) \therefore AB+CD=AD+BC-----(5) 1 Since AB=DC and AD=BC (opposite sides of parallelogram ABCD) $\frac{1}{2}$ putting in (5) we get, 2AB=2AD or AB = AD. ∴ AB=BC=DC=AD Since a parallelogram with equal adjacent sides is a rhombus, so ABCD is a 1⁄2 rhombus

OR

Join OC

In Δ OPA and Δ OCA OP = OC (radii of same circle) 1 PA = CA (length of two tangents from an external point) AO = AO (Common) Therefore, \triangle OPA $\cong \triangle$ OCA (By SSS congruency criterion) 1⁄2 Hence, $\angle 1 = \angle 2$ (CPCT) 1/2 Similarly $\angle 3 = \angle 4$ $\angle PAB + \angle QBA = 180^{\circ}$ (co interior angles are supplementary as XY||X'Y') 1/2 $2\angle 2 + 2\angle 4 = 180^{\circ}$ 1/2 $\angle 2 + \angle 4 = 90^{\circ}$ -----(1) $\angle 2 + \angle 4 + \angle AOB = 180^{\circ}$ (Angle sum property) Using (1), we get, $\angle AOB = 90^{\circ}$

31	(i)	P (At least one head) = $\frac{3}{4}$	1
	(ii)	P(At most one tail) = $\frac{3}{4}$	1
	(iii)	P(A head and a tail) $=\frac{2}{4}=\frac{1}{2}$	1

SECTION D

32	Let the time taken by larger pipe alone to fill the tank= x hours	1⁄2
	Therefore, the time taken by the smaller pipe = $x+10$ hours	

Water filled by larger pipe running for 4 hours $=\frac{4}{x}$ litres Water filled by smaller pipe running for 9 hours $=\frac{9}{x+10}$ litres

We know that $\frac{4}{x} + \frac{9}{x+10} = \frac{1}{2}$	1
Which on simplification gives:	1
$x^2 - 16x - 80 = 0$	1
$x^2-20x + 4x-80=0$	
x(x-20) + 4(x-20) = 0	
(x + 4)(x - 20) = 0	1
x=- 4, 20	1
x cannot be negative.	1/2
Thus, x=20	$\frac{72}{1/2}$
x + 10 = 30	72
Larger pipe would alone fill the tank in 20 hours and smaller pipe would fill the tank alone in 30 hours.	1⁄2

OR

Let the usual speed of plane be x km/hr and the reduced speed of the plane be (x-200) km/hr Distance =600 km [Given] According to the question,	
(time taken at reduced speed) - (Schedule time) = $30 \text{ minutes} = 0.5 \text{ hours}$.	
	1
$\frac{600}{x-200} - \frac{600}{x} = \frac{1}{2}$	
Which on simplification gives:	1
$x^2 - 200x - 240000 = 0$	
$x^2 - 600x + 400x - 240000 = 0$	
$\mathbf{x}(\mathbf{x-600}) + 400(\mathbf{x-600}) = 0$	
(x-600)(x+400) = 0	1
x=600 or x=-400	1
But speed cannot be negative.	$\frac{1/2}{1/2}$
\therefore The usual speed is 600 km/hr and	

\therefore The usual speed is 600 km/hr and	
the scheduled duration of the flight is $\frac{60}{60}$	$\frac{0}{0} = 1$ hour

33 For the Theorem : Given, To prove, Construction and figure

11/2

1⁄2

Proof

11/2

1⁄2

Let ABCD be a trapezium DC||AB and EF is a line parallel to AB and hence to DC.

To prove : $\frac{DE}{EA} = \frac{CF}{FB}$	
Construction : Join AC, meeting EF in G.	
Proof:	
In $\triangle ABC$, we have	
GF AB	
CG/GA=CF/FB [By BPT](1)	1/2
In \triangle ADC, we have	
EG DC (EF AB & AB DC)	1/
$DE/EA = CG/GA [By BPT] \dots (2)$	1/2
From (1) & (2), we get, $\frac{DE}{EA} = \frac{CF}{FB}$	1/2
Radius of the base of cylinder (r) = 2.8 m = Radius of the base of the cone (r)	
Height of the cylinder (h)=3.5 m	
Height of the cone $(H)=2.1$ m.	
Slant height of conical part (1)= $\sqrt{r^2+H^2}$	
$=\sqrt{(2.8)^2+(2.1)^2}$	
$=\sqrt{7.84+4.41}$	1

$=\sqrt{12.25}=3.5$ m	1
Area of canvas used to make tent = CSA of cylinder + CSA of cone	1

 $= 2 \times \pi \times 2.8 \times 3.5 + \pi \times 2.8 \times 3.5$

34.

 $= 92.4 m^2$ 1

Cost of 1500 tents at ₹120 per sq.m

= 1500×120×92.4

Share of each school to set up the tents = 16632000/50 = ₹332,640

OR

Class interval	Frequency	Cumulative Frequency
0-100	2	2
100-200	5	7
200-300	X	7+x
300-400	12	19+x
400-500	17	36+x
500-600	20	56+x
600-700	у	56+x+y
700-800	9	65+x +y
800-900	7	72+x+y
900-1000	4	76+x+y

35	Median =	525 so	Median	Class =	500 - 600
55	Muculan –	525, 50	wiculan	Class -	300 - 000

11/2

 $\frac{1}{2}$

76+x+y=100
$$\Rightarrow$$
x+y=24(i) 1
Median = 1 + $\frac{n^2 - cf}{2}$ x h

$$Median = 1 + \frac{2^{-Cl}}{f} x h$$

Since, l=500, h=100, f=20, cf=36+x and n=100

Therefore, putting the value in the Median formula, we get;

$$525 = 500 + \frac{50 - (36 + x)}{20} \times 100$$

so x = 9
y = 24 - x (from eq.i)
y = 24 - 9 = 15
Therefore, the value of x = 9
and y = 15.

36

B(1,2), F(-2,9)
BF² = (-2-1)²+ (9-2)²
= (-3)²+ (7)²
= 9 + 49
= 58
So, BF =
$$\sqrt{58}$$
 units

(ii)

(i)

W(-6,2), X(-4,0), O(5,9), P(3,11) Clearly WXOP is a rectangle Point of intersection of diagonals of a rectangle is the mid point of the diagonals. So the required point is mid point of WO or XP

$$=\left(\frac{-6+5}{2}, \frac{2+9}{2}\right)$$

= $\left(\frac{-1}{2}, \frac{11}{2}\right)$ ^{1/2}

(iii) A(-2,2), G(-4,7)
Let the point on y-axis be
$$Z(0,y)$$

 $AZ^2 = GZ^2$

1⁄2

1⁄2

1

$$(0+2)^{2} + (y-2)^{2} = (0+4)^{2} + (y-7)^{2}$$

$$(2)^{2} + y^{2} + 4 - 4y = (4)^{2} + y^{2} + 49 - 14y$$

$$8 - 4y = 65 - 14y$$

$$10y = 57$$
So, $y = 5.7$
i.e. the required point is (0, 5.7)
$$\frac{1}{2}$$

So, height of the trapezium AFGH = 2 units

So, area of AFGH = $\frac{1}{2}$ (AF + GH) x height

$$= \frac{1}{2}(7+3) \times 2$$
= 10 sq. units

1⁄2

1⁄2

$$= 10$$
 sq. units $\frac{1}{2}$

37. (i) Since each row is increasing by 10 seats, so it is an AP with first term a=30, and common difference d=10. So number of seats in 10th row = $a_{10} = a+9d$ $= 30 + 9 \times 10 = 120$ (ii) $S_n = \frac{n}{2}(2a + (n-1)d)$ $1500 = \frac{n}{2}(2 \times 30 + (n-1)10)$ $3000 = 50n + 10n^2$ $n^2 + 5n - 300 = 0$ (n+20) (n-15) = 0Rejecting the negative value, n= 15

OR

No. of seats already put up to the 10^{th} row = S₁₀ S₁₀ = $\frac{10}{2}$ {2 × 30 + (10-1)10)}

= 5(60 + 90) = 750	1/2
So, the number of seats still required to be put are $1500 - 750 = 750$	1/2

(iii) If no. of rows =17
then the middle row is the 9th row
$$\frac{1}{2}$$

 $a_8 = a + 8d$
 $= 30 + 80$
 $= 110$ seats $\frac{1}{2}$

38 (i)

P and Q are the two positions of the plane flying at a height of $3000\sqrt{3}$ m. A is the point of observation.

(ii) In \triangle PAB, tan60° =PB/AB Or $\sqrt{3} = 3000\sqrt{3}$ / AB So AB=3000m tan30° = QC/AC $1/\sqrt{3} = 3000\sqrt{3}$ / AC AC = 9000m distance covered = 9000- 3000 = 6000 m.

OR

In \triangle PAB, tan60° =PB/AB Or $\sqrt{3}$ = 3000 $\sqrt{3}$ / AB So AB=3000m tan45° = RD/AD 1=3000 $\sqrt{3}$ / AD 1⁄2

1

1

1⁄2

1⁄2

1⁄2

AD = $3000\sqrt{3}$ m distance covered = $3000\sqrt{3} - 3000$ = $3000(\sqrt{3} - 1)$ m.	1/2
(iii) speed = $6000/30$ = 200 m/s	1/2
= 200 m/s = 200 x 3600/1000	1/2
= 720km/hr	
Alternatively: speed = $\frac{3000(\sqrt{3}-1)}{15(\sqrt{3}-1)}$	1/2
= 200 m/s	
$= 200 \times 3600/1000$	1/2
= 720km/hr	