DELHI PUBLIC SCHOOL, VINDHYANAGAR Pre Baord-2, 2019-20

Class: X

Subject: Mathematics-Basic (241)

Time: 3 hour Max. Mar.: 80 Marks

General Instructions:

- 1. All questions are compulsory
- 2. The question paper consists of 40 questions divided into four sections A, B, C & D.
- 3. Section A comprises of 20 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 8 questions of 3 marks each. Section D comprises 6 questions of 4 marks each.
- 4. There is no overall choice. However internal choices have been provided in two questions of 1 mark each, two questions of 2 marks each, three questions of 3 marks each and three questions of 4 marks each. You have to attempt only one of the alternatives in all such questions.

	5. Use of calculators is not permitted.						
	[SECTION - A: 1 Mark]						
	Q1-10 are multiple choice questions. Select the most appropriate answer from the given options.						
1	$n^2 - 1$ is divisible by 8, if n is (A) an integer (B) a natural number (C) an odd integer (D) an even integer	1					
2							
3							
4	If $a = x^3y^2$ and $b = xy^3$; x, y are prime numbers, then HCF (a, b) is (A) xy (B) xy^2 (C) x^3y^3 (D) x^2y^2						
5	If a die is thrown once then the probability of getting a prime number is? (A) $\frac{1}{3}$ (B) $\frac{1}{2}$ (C) $\frac{1}{6}$ (D) 1						
6	The zeroes of the quadratic polynomial $x^2 - 9$ are: (A) 3 (B) -3 (C) ± 3 (D) ± 9	1					
7	The least number that is divisible by all the numbers from 1 to 10 (both inclusive) is (A) 10 (B) 100 (C) 504 (D) 2520						
8	Which of the following is not the graph of a quadratic polynomial? (A) (B) (C) (D)	1					

9	The distance of the point P (-3, -4) from the x-axis is (A) 7 units (B) 5 units (C) 4 units (D) 3 units	1				
10		1				
10	If the distance between the points $(4, p)$ and $(1, 0)$ is 5, then the value of p is $(A) 4 \qquad (B) \pm 4 \qquad (C) - 4 \text{ only} \qquad (D) 0$	1				
	(Q11 - Q15) Fill in the blanks.					
11	The point, which is equidistant from the points A (6, 5) and B (-4, 3) on the y-axis is	1				
12	For what values of k, the quadratic equation $k \times (x-2) + 6 = 0$ have two equal roots	1				
	[OR] For what value of p, the pair of equations 4x+py+8=0, 2x+2y+2=0 has unique solution					
13	The value of 2 tan ² 45° + cos ² 30° – sin ² 60° is	1				
14	The value of $\frac{\tan 30}{\cot 60}$ is	1.				
15	The areas of two similar triangles are in the ratio 2:3 then the sides of these triangles are in the ratio	1.				
	(Q16 - Q20) Answer the following:					
16	In \triangle ABC, right-angled at B, AB = 24 cm, BC = 7 cm. Find sin A. [OR]	1				
	If $\sec \theta = p$ for $0^{\circ} < \theta \le 90^{\circ}$ then find the value of $\sin \theta$.					
17	Find the area of a sector of circle of radius 21 cm and central angle 120°. $\left(\text{Use}\pi = \frac{22}{7}\right)$.	1				
18	Find the probability of getting exactly 2 heads when a coin is tossed twice.					
19	In the given fig. If DE BC Find EC.	1				
	3 cm C	·				
20	What is the common difference of an AP in which $a_{18} - a_{14} = 32$?	1				
	[SECTION B: 2 Marks]					
21	One card is drawn from a well-shuffled deck of 52 cards. Find the probability of getting (i) a red face card (ii) the queen of diamonds	2				
22	If one disc is drawn at random from the box containing 50 discs which are numbered from 1 to 50, find the probability that it bears (i) a two-digit number (ii) a perfect square number. [OR] A die is thrown twice. What is the probability that 5 will come up at least once?	2				
23	Two concentric circles are of radii 5 cm and 3 cm. Find the length of the chord of the larger circle which touches the smaller circle.	2				

		2					
24	$5\cos^2 60^\circ + 4\sec^2 30^\circ - \tan^2 45^\circ$	2					
	Evaluate. $\sin^2 30^\circ + \cos^2 30^\circ$						
a. Carrier	[OR]						
	If sec4A = cosec (A – 20°), where 4A is an acute angle, find the value of A.						
25	The radii of two circles are 8 cm and 6 cm respectively. Find the radius of the circle having area equal to the sum of the areas of the two circles.						
26	Read the following passage and answer the questions that follows:	2					
	A teacher told 10 students to write a polynomial on the black board. Students wrote						
	1. $x^2 + 2$ 2. $2x + 3$						
	3. $x^3 + x^2 + 1$ 4. $x^3 + 2x^2 + 1$						
	$5. x^2 - 2x + 1$ $6. x - 3$						
	7. $1+ x^2 + 0x^4$ 8. $x^2 + 2x + 1$						
	$9.2x^3 - x^2$ $10.x^4 - 1$						
	(i) How many students wrote quadratic polynomial?						
	(ii) Divide the polynomial $(x^3 + x^2 + 1)$ by $(x - 3)$.						
	[SECTION - C: 3 Marks]						
27	Find the zeroes of the quadratic polynomial $3x^2 - x - 4$ and verify the relationship between the zeroes and the coefficients.						
28	Draw a pair of tangents to a circle of radius 5 cm which are inclined to each other at an angle of 60°.	3					
	[OR]						
	Draw a triangle ABC with side BC = 6 cm, AB = 5 cm and ∠ ABC = 60°. Then construct a	-					
	triangle whose sides are $\frac{3}{4}$ of the corresponding sides of the triangle ABC.						
29	In Figure, ABC is a quadrant of a circle of radius 14 cm and a semicircle is drawn with BC as diameter. Find the area of the shaded region.	3					
	B						
		man a framewood					
	A C	-					
30	Prove that by using Trigonometric Identities.						
	$\sin \theta - \cos \theta + 1 = 1$						
	$\sin \theta + \cos \theta - 1 \sec \theta - \tan \theta$	-					
	[OR]						
	$\frac{\tan \theta}{1 - \cot \theta} + \frac{\cot \theta}{1 - \tan \theta} = 1 + \sec \theta \csc \theta$	Part and a second					
		1_					

31	Prove that √5 is irrational	al.	ropi.				3	
	Use Euclid's division len 9m, 9m + 1 or 9m + 8.	nma to show t	[OR] hat the cube	of any positive	integer is of	the form	C. C.	
32	Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the center of the circle.							
33	Find the area of the quadrilateral whose vertices, taken in order, are $(-4, -2)$, $(-3, -5)$, $(3, -2)$ and $(2, 3)$.							
Ritu can row downstream 20 km in 2 hours, and upstream 4 km in 2 hours. Find he of rowing in still water and the speed of the current.							3	
	8.5	[SE	CTION - D: 4	Marks]				
35	A pole has to be erected at a point on the boundary of a circular park of diameter 13 meters in such a way that the differences of its distances from two diametrically opposite fixed gates A and B on the boundary is 7 meters. Is it possible to do so? If yes, at what distances from the two gates should the pole be erected?							
36	If the sum of first 7 terms terms.	s of an AP is 4	19 and that of [OR]	17 terms is 28	89, find the su	ım of first n	4	
	How many three-digit numbers are divisible by 7? Then find sum of all the numbers.							
37	The angles of elevation of the top of a tower from two points at a distance of 4 m and 9 m from the base of the tower and in the same straight line with it are complementary. Prove that the height of the tower is 6 m.							
38	Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.					4		
	State and prove the Pyth	nagoras theor	[OR] em.					
39	A gulab jamun, contains sugar syrup up to about 30% of its volume. Find approximately how much syrup would be found in 45 gulab jamuns, each shaped like a cylinder with two hemispherical ends with length 5 cm and diameter 2.8 cm.							
40	Consider the following distribution of daily wages of 50 workers of a factory.						4	
	Daily income(in Rs)	100-120	120-140	140-160	160-180	180-200		
	Numbers of workers	12	14	8	6	10		
	Find the mean daily wag		[OR]					