| | MODEL EXAMINATION ,FEBRUARY -2017
CHEMISTRY | | | | |----|---|---|--------|----| | | (English Medium) Answer Key | | | | | Q | Scoring Indicators | S | CO | re | | 1 | 3f , 1p | | 1 | | | 2 | a. 13 b. Group -13 Period - 3 c. X ₂ O ₃ | 1 | 1 | 1 | | 3 | (A) a. 36g b. 112 L (Or) (B) a. 40 g b. 134.4 L | 1 | 2 | 1 | | 4 | M = n/V in Litres A. (14g/56g) / 0.5 L = 0.5 moles / Litre B. (18g/40g) / 0.6 L = 0.75 moles / Litre C. (18g/40g) / 0.75 L = 0.6 moles / Litre A < C < B | | 2 | | | | a. Fe | | 1 | | | 5 | b. Positive catalyst – Increases the rate of a reaction Eg MnO_2 in the decompositio of H_2 O_2 Negative catalyst – Decreases the rate of a reaction Eg . Phosphoric acid H_3PO_4 in the decomposition of H_2O_2 | | 2 | | | 6 | ii) Increase in pressure favours the forward reaction iv) Removal of NO ₂ favours the backward reaction | | 1
1 | | | 7 | No , Iron is more reactive than Copper . Hence it will displace copper from the solution | | 2 | | | 8 | a. At the Cathode – Copper At the anode – Chlorine b. At the cathode Cu²+ + 2 e → Cu (s) At the anode | | 1
2 | | | v | $ \begin{array}{ccc} \underline{\mathbf{2Cl}}^{T} - \mathbf{2e} & \rightarrow & \mathbf{Cl}_{2} \\ \mathbf{c.} & \text{Positive} \end{array} $ | | 1 | | | 9. | a. Elements or their compounds , occurring naturally and obtained by mining are called minerals. Ore is the mineral from which a metal is extracted economically, easily and quickly. | | 1 | | | | b. Sulphide ores eg. Copper pyrites. | | 2 | | | 10 | Haematite / Magnetite | | 1 | | | 11 | a. To dissolve Aluminium oxide in NaOH forming Sodium aluminate (NaAlO ₂) b. To reduce the melting point and to increase the electrical conductivity. | | 1
1 | 1 | | 12 | a. CH ₃ -CH ₂ -COOH
CH ₃ -CH-COOH | | 2 | | | | b. Butanoic Acid , 2- Methyl propanoic acid | | 2 | | | 13 | a. CH ₃ CH ₃ | 1 | |----|---|------| | | CH ₃ -CH ₂ -C-CH ₂ -CH ₂ -CH ₃ | | | | CH ₃ CH ₃ | 1 | | | b. CH ₃ | | | | CH ₃ -CH ₂ -CH ₂ -CH-C= C-CH ₃ | | | | | | | 14 | a. Vinyl Chloride (Chloroethene) | 1 | | | b[CH2CH] _n | 1 | | | Cl | 1 | | 15 | a. Methyl alcohol and Propanoic acid or any other suitable combinations
b. CH ₃ OH + CH ₃ -CH ₂ -COOH → CH ₃ -COO-CH ₂ -CH ₃ + H ₂ O (Or any suitable | 1 | | | alternative) | 2 | | 16 | (i) - (d) | 2 | | | (ii) - (a)
(iii) - (b) | | | | (iv) - (c) | **** | | 17 | Flint Glass/ Optical Glass/ Lead glass | 1 | | | | | | | Prepared by Unmesh B ,HSA Govt VHSS Kallara Thiruvananthapuram . | |