SECOND YEAR HIGHER SECONDARY MODEL EXAMINATION MARCH 2022

SUBJECT: CHEMISTRY

Qn. Code: ME 525

Qn. No.	Sub Qns.	Answer Key/Value	Points	Score	Total
	Q115.	PAR	ТІ		
		A. Answer any 5 questions from	1 to 9. Each carries 1 score		
1.		(b) Co		1	1
2.		38% Sulphuric acid (H ₂ SO ₄) solution		1	1
3.		(d) Molarity		1	1
4.		S ⁻¹		1	1
5.		Nickel (Ni)		1	1
6.		(c) Rubber Latex		1	1
7.		(a) CH ₃ -NH ₂		1	1
8.		CH ₃ -CH ₂ -OH (Ethanol)		1	1
9.		(c) COCl ₂		1	1
		B. Answer all questions from 10	0 to 13. Each carries 1 score		
10.		(b) Thymine		1	1
11.		(b) Phenol, formaldehyde		1	1
12.		(c) Artificial Sweetener		1	1
13.		(b) Zinc		1	1
		PA	IRT II		
	1	A. Answer any 2 questions from 1	4 to 17. Each carries 2 scores		
14.		Order 1. It is the sum of the powers of the concentration terms in the rate law expression 2. It is an experimental quantity 3. It can be zero or fractional	Molecularity It is the total number of reactant species collide simultaneously in a chemical reaction It is a theoretical quantity It cannot be zero or fractional (Any 2 differences required)	2	2
15.		The regular decrease in the atomic and ionic radii along lanthanide series is known as lanthanide contraction. Consequences: i) Due to Lanthanide Contraction the 2nd and 3rd row transition series elements have similar radii. ii) Lanthanides have similar physical properties and they occur together in nature. So their isolation is difficult. [Any one required]		1	2
16.		Hinsberg reagent is benzene sulphonyl chloride ($C_6H_5SO_2CI$). It is used to distinguish the three types of amines.		1 1	2
17.		Osmotic pressure (π) = CRT Here C = 0.1 M, R = 0.082 Latm/K/mol and T = 27 ⁰ C = 27 + 273 = 300 K So, π = 0.1 x 0.082 x 300 = 2.46 atm		1	2
	1	B. Answer any 2 questions from 2	18 to 20. Each carries 2 scores	1	
18.		In conductors, the valence band is either partially filled or it is overlapped with the conduction band. So electrons can easily flow from valence band to conduction band. In insulators, there is a large gap between valence band and conduction band. So no		2	2

	electrons can move from valence band to co	nduction band.		
	Or, the diagram.			
	Conduction ball Empty band Forbidden ze (Large energy filled band (a) Metal (b) Insulator	one gy gap)		
	The preparation of Potassium permangana steps.	te from Pyrolusite (MnO2) involves two		
		1. MnO_2 is fused with KOH to form potassium manganate (K ₂ MnO ₄).		
19.	$2MnO_2 + 4KOH + O_2 \rightarrow 2$ 2. K ₂ MnO ₄ is electrolytically oxidised to p		1	2
	MnO_4 ²⁻ Electrolytic oxida		-	
	in alkaline mediu	m		
	 When aniline is treated with nitrous a 273-278K, benzene diazonium chloric 	acid (prepared by mixing NaNO ₂ & HCl) at the is formed	1	
	 Benzene diazonium chloride on warm 		1	
	Or the equation:			
20.	$\begin{array}{c c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$	\rightarrow + N ₂ + IICI		2
	Aniline Benzene diazon chloride	ium		
	PAR A. Answer any 3 questions fro	T III om 21 to 24. Each carries 3 scores		
	Schottky Defect	Frenkel Defect		
21	Arising due to the missing of equal number of anions and cations from the lattice site	Arising due to the misplacing of a cation from the lattice site to the interstitial site.	2	2
21.	Decreases the density of the solid	No change in the density of the solid.	3	3
	It is shown by ionic crystals in which the anionic and cationic sizes are almost equal.	<i>It is shown by ionic solids in which there is a large difference in the size of the ions.</i>		
22.	For a first order reaction, $k = \frac{2.303}{t} \log \frac{[R]_0}{[R]}$		1	3

		For 90% completion, we can take $[R]_0 = 100$ and $[R] = 100 - 90 = 10$. Also, t = 20 s So k = $\frac{2.303}{20} \log \frac{100}{10} = 0.115 \text{ s}^{-1}$ Half life period (t ½) = $0.693/k = 0.693/0.115 = 6.026 \text{ s}$ Williamson Synthesis: Alkyl halide reacts with sodium alkoxide to form ether. This reaction is called Williamson's ether synthesis. Or, R-X + R'-ONa \rightarrow R-O-R' + NaX	1 1	
23.		By Williamson synthesis, we can prepare methoxybenzene (Anisole) by treating sodium phenoxide (C_6H_5 -ONa) with methyl bromide (CH_3 -Br). C_6H_5 -ONa + CH_3 -Br \longrightarrow C_6H_5 -O- CH_3 + NaBr	2	3
	(i)	Phenol when treated with chloroform in the presence of sodium hydroxide, followed by acidification, we get salicylaldehyde (o-hydroxybenzaldehyde). This reaction is known as Reimer - Tiemann reaction. Or the equation:	2	
24.		$\begin{array}{c} OH \\ \hline \\ OH \\ \hline \\ CHCl_{3} + aq NaOH \end{array} \xrightarrow{\left[\begin{matrix} \overline{O} \\ O \\ O \\ O \\ CHCl_{2} \end{matrix}} \xrightarrow{\left[\begin{matrix} O \\ O$		3
	(ii)	2,4,6 – Tribromophenol B. Answer any 2 questions from 25 to 27. Each carries 3 scores	1	
	(1)	van't Hoff factor (i) is defined as:		
	(i)	i = <u>Normal Molar mass</u>	1	
		Abnormal molar mass Or, i = Observed colligative property		
25.		Calculated colligative property		3
23.		Or, i = Total number of moles of particles after association/dissociation		5
	(11)	Number of moles of particles before association/dissociation If the solvent is benzene, benzoic acid molecules undergo dimerization. So the		
	(ii)	number of particles decreases and hence the colligative properties. So the value of	2	
		molar mass obtained by colligative property measurement is abnormal.	2	
	(i)	Haloarenes are less reactive towards nucleophilic substitution reactions due to the		
		following reasons: 1. Resonance effect: Due to this effect, the C – X bond gets a partial double bond	2	
		character.		
26.		2. sp^2 hybridisation of the carbon to which halogen atom is bonded. 3. Due to instability of phenyl cation, S_{N2} reaction does not occur.		3
20.		4. Due to repulsion between nucleophile and electron rich nucleophile.		
	(ii)	[Any 2 required] When a mixture of alkyl halide and aryl halide is treated with sodium in dry ether, an alkyl arene is formed. This reaction is called Wurtz-Fittig reaction. Or the equation:	1	

		$ \begin{array}{c} & X \\ & + \text{ Na } + \text{ RX } \end{array} \xrightarrow{\text{Ether}} \begin{array}{c} & \\ &$		
27.	(i)	Hydroboration - oxidation reaction: Propene add diborane (B ₂ H ₆) to give tripropyl borane as addition product. This on oxidation by hydrogen peroxide in the presence of aqueous sodium hydroxide to form propan-1-ol.	2	3
	(ii)	$\begin{array}{c} CH_3-CH=CH_2 + B_2H_6 & \longrightarrow & (CH_3-CH_2-CH_2)_3B & \underline{H_2O_2/OH} & CH_3-CH_2-CH_2-OH \\ Wood spirit is Methanol or methyl alcohol & \end{array}$	1	
		PART IV		
		A. Answer any 3 questions from 28 to 31. Each carries 4 scores		
	(i)	Fuel cells are galvanic cells which convert the energy of combustion of fuels directly into electrical energy. Working of H ₂ - O ₂ fuel cell:	1	
28.		Anode reaction: $2H_2 + 4OH - \rightarrow 4H_2O + 4e -$ Cathode reaction: $O_2 + 2H_2O + 4e - \rightarrow 4OH -$ Overall reaction: $2H_2$ (g) + O_2 (g) - $\rightarrow 2$ H ₂ O(I	2	
	(ii)	The advantages of fuel cell are: i) The cell works continuously as long as the reactants are supplied. ii) It has higher efficiency as compared to other conventional cells. iii) It is eco-friendly (i.e. pollution free) since water is the only product formed. iv) Water obtained from H ₂ – O ₂ fuel cell can be used for drinking. [Any 2 required]	1	4
29.	(i) (ii)	PolymerMonomerHDPEthyleneTeflonTetrafluoroetheneProteinAmino acidStarchD-glucoseThe process of heating natural rubber with sulphur and an appropriate additive at a temperature of 373 to 415 K is called vulcanisation.On vulcanisation, sulphur forms cross links between the different poly isoprene units and thus the rubber gets stiffened.	4 x ½ 1 1	4
30.	(i) (ii)	Cane sugar (sucrose) on hydrolysis gives an equimolar mixture of glucose and fructose. $\begin{array}{c}C_{12}H_{22}O_{11}+H_2O \rightarrow & C_6H_{12}O_6 & + & C_6H_{12}O_6\\ & Sucrose & D(+)Glucose (+52.5^{\circ}) & D(-)Fructose (-92.4^{\circ})\\ \end{array}$ Sucrose is dextro rotatory, but after hydrolysis it gives dextro rotatory glucose and laevo rotatory fructose. Since the laevo rotation of fructose is more than dextro rotation of glucose, the mixture is laevo rotatory. So the process is called <i>inversion of</i> <i>cane sugar</i> . Sucrose molecule does not contain free aldehydic or ketonic group. So it is called non-reducing sugar.	2	4
31.	(i)	Leaching of alumina from Bauxite: Here the powdered ore is treated with a concentrated solution of NaOH at 473 – 523 K and 35 – 36 bar pressure. Alumina		4

	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			3	
	(1)	Brownian movement: It is the zig-zag move			
	(i)	medium.		1	
22		It is due to the unbalanced bombardment of	of particles of the dispersed phase by the	1	4
32.		particles of dispersion medium.			4
	(ii)	Zeolites are aluminosilicates of metals, whi	ich have honey-comb like structure. They	2	
	(11)	are used as shape selective catalysts in pet	rochemical industries.		
	(i)	Anionic Detergents	Cationic Detergents		
		a) These are sodium salts of	a) These are quaternary ammonium		
		sulphonated long chain alcohols or	salts of amines with acetates,		
		hydrocarbons.	hydrocarbons. chlorides or bromides as anions.	2	
		b) Here the anionic part of the molecule	b) Here the cationic part is responsible	2	
33.		is involved in the cleansing action.	for cleansing action.		
55.		E.g. Sodium salts of	E.g. Cetyltrimethylammoniumbromide		4
		alkylbenzenesulphonates.			-
	(ii)	Antibiotics which kill or inhibit a wide range	e of Gram-positive and Gram-negative		
		bacteria are called broad spectrum antibio		2	
		E.g. Ampicillin, Amoxycillin, Chloramphenic	col, Vancomycin, Ofloxacin etc. [Any one	_	
		example required]			
			IRT V		
	1		n 34 to 36. Each carries 6 scores		
		Contact process involves the following step			
	(i)	(i) Burning of sulphur or sulphide of	pres in air to generate SO_2 .		
		$S(s) + O_2(g) \rightarrow SO_2(g)$			
			reaction with oxygen in the presence of a	~	
		catalyst (V_2O_5)		3	
		$2SO_2 + O_2 \rightarrow 2SO_3$			
34.		(iii) Absorption of SO ₃ in H_2SO_4 to g	$(H_2S_2U_7)$.		6
		SO ₃ + H ₂ SO ₄ \rightarrow H ₂ S ₂ O ₇	voc U CO of the desired concentration		
			ves H_2SO_4 of the desired concentration.		
	(;;)	$H_2S_2O_7 + H_2O \rightarrow 2H_2SO_4$	formed by combination of different	2	
	(ii)	Inter halogen compounds are compounds halogen atoms. E.g.: CIF	ionned by combination of different	Z	
	(iii)	PCl ₃ reacts with moisture and forms fumes	of HCl ass	1	
	(11)	$PCI_3 + H_2O \longrightarrow H_3PO_3 + HCI$	UTTCI gas.	Т	

	(i)	Rosenmund reduction : Acid chlorides react with hydrogen in presence of Pd supported on BaSO ₄ , we get aldehydes. This reaction is called Rosenmund's reduction. Or, the equation:	2	
35.	(::)	$R-COCI + H_2 \qquad \underline{Pd/BaSO_4} \qquad R-CHO + HCI$	2	6
	(ii)	Crotanaldehyde or, But-2-enal 2CH ₃ -CHO <u>dil. NaOH</u> CH ₃ -CH(OH)-CH ₂ -CHO Ethanal CH ₃ -CH=CH-CHO But-2-enal (Crotanaldehyde)	2	
	(iii)	Fluoroacetic acid. This is due to the greater electronegativity (-I effect) of fluorine.		
	(i)	[Co(NH₃)₅Br]SO₄ – Pentaamminebromidocobalt(III)sulphate [Ni(CO)₄] – TetracarbonyInickel(0)		
	(ii)	Linkage isomerism : This type of isomerism is shown by co-ordination compounds containing ambidentate ligand, which can bind to the central atom through more		
26		than one donor atoms. Eg. NO ₂ ligand can bind to the central atom either through nitrogen atom or through oxygen atom. In [Co(NH ₃) ₅ (ONO)]Cl ₂ , it is bound through oxygen atom, and in [Co(NH ₃) ₅ (NO ₂)]Cl ₂ it is bound through nitrogen atom.	1	
36.	(iii)	Geometrical isomers of [Co(NH ₃) ₄ Cl ₂] ⁺	1	
		$H_{3}N \bigvee_{Co}^{Cl} Cl + H_{3}N \bigvee_{Co}^{Cl} NH_{3}^{+}$		
		$H_{3}N$ NH_{3} $H_{3}N$ $H_{3}N$ H_{3}		
		cis isomer trans isomer		
