SECOND YEAR HIGHER SECONDARY EXAMINATION APRIL 2021

SUBJECT: CHEMISTRY

Qn. Code: SY 225

Qn.	Sub	Answer Key/Value Points	Scor	То			
No.							
Answer questions from 1 to 11. Each carries 2 scores. 1. (i) (A) NaCl							
1.	(1)	Like liquids, glass has a tendency to flow / since it is an amorphous solid/ in glass, the	1	2			
	(ii)	particles have only short range order.	1	2			
2.	(i)	12					
	(ii)	Total no. of voids = 3N mol or 3N x 6.022 x 10 ²³ voids	1	2			
3.		$ \begin{array}{c} & & & \\ & &$	2	2			
4.	(i)	38% H ₂ SO ₄ solution or Sulphuric acid solution	1 2				
	(ii)	Dry cell/Mercury cell/button cell [Any one example required]	1	2			
5.		If the order of a reaction is zero, it is called zero order reaction.	1				
		Or , it is the reaction in which the rate of the reaction is independent of the		2			
		concentration of the reactants. Or , Example for zero order reaction.		2			
		For a zero order reaction, the unit of rate constant is mol/L/s or mol L ⁻¹ s ⁻¹ .	1				
6.	Α.	Homogeneous catalysis	1	2			
	В.	Heterogeneous catalysis	1	2			
7.	(i)	(D) Zinc blende	1	2			
	(ii)	Distillation	1	2			
8.	(i)	HNO ₃ /Nitric acid	1	2			
	(ii)	Ostwald's process	1	2			
9.	(i)	PCl ₃ reacts with moisture and form HCl gas/ due to the formation of hydrogen chloride gas. Or, the equation PCl ₃ + $3H_2O \rightarrow H_3PO_3 + 3HCl$	1				
	(ii)	Since in PCI ₅ , the axial bond length is greater than the equatorial bond length/	2				
		due to its unsymmetrical structure/due to the greater repulsion between axial					
		bond pairs and equatorial bond pairs/due to its trigonal bipyramidal structure.	1				
		[Any one reason]					
10.	(i)	Potassiumtetrahydroxidozincate(II) 1					
	(ii)			2			
11.	(i)	CH ₃ -CH ₂ -Cl/ Chloroethane/ Ethyl chloride	1				
	(ii)	CH ₃ -CHI-CH ₃ / 2-lodopropane/ Isopropyl iodide	1	2			

		Questions 12 to 29 carry 3 scores each.		
12.		A unit cell is the smallest portion of a crystal lattice which, when repeated in three	1	
		dimension to generate an entire lattice. Or, it is the building block of a crystal.		
		Number of atoms present per unit cell		
		bcc: Here the particles are present at the corners of the cube and also one atom at		
		the body centre.	1	
		The number of atoms at the corner = $8 \times 1/8 = 1$		3
		The number of atoms at the body-centre = 1		
		Therefore, total number of atoms in the unit cell = 1+1 = 2		
		Fcc: Here the atoms are present at the corners and also at the centre of each faces.	1	
		Number of corner atoms = $8 \times 1/8 = 1$		
		Number of face-centre atoms = $6 \times 1/2 = 3$		
		Therefore, total number of atoms = 1+3 = 4		
13.	(i)	Ferromagnetic substances	1	
	(ii)	Alignment of magnetic moments in a ferromagnetic substance:		
		$(\uparrow) (\uparrow) (\uparrow) (\uparrow) (\uparrow) (\uparrow) (\uparrow) (\uparrow) (\uparrow) (\uparrow) $	1	
				3
		Alignment of magnetic moments in a ferrimagnetic substance:		
			1	
14.		Henry's law states that at a constant temperature, the solubility of a gas in a liquid is	1	
		directly proportional to the pressure of the gas.		
		Or, the partial pressure of a gas in vapour phase is proportional to the mole fraction		
		of the gas in the solution.		
		Or, its mathematical form: $\mathbf{p} = \mathbf{K}_{H} \mathbf{x}$ (where p is the partial pressure of the gas, K_{H} is		3
		the Henry's law constant and x Is the mole fraction of the gas in the solution).		
		Applications: Preparation of soda water, a condition known as <i>Bends</i> in Scuba divers,		
		a medical condition known as Anoxia in people living at high altitudes. (Any 2	2	
		applications required)		
15.	(i)	$E_{cell} = E_{cell}^{0} - \frac{2.303 \text{RT}}{2.303 \text{RT}} \log [\text{Zn}^{2+}]$	1	
		2F [Cu ²⁺]		
		OR,		
		$E_{cell} = E_{cell}^{0} - \frac{0.0591}{2} \log \frac{[Zn^{2+}]}{[Cu^{2+}]}$ (at 298 K)		3
		$\overline{2}$ [Cu ²⁺]		3
	(ii)	Conductivity and molar conductivity are related as: $\lambda m = 1000 \text{ k/M}$	1	
		Here $\hat{k} = 0.0248 \text{ S cm}^{-1}$ and molarity, M = 0.2 M		
		So $\lambda m = 1000 \times 0.0248/0.2 = 124 \text{ S cm}^2 \text{ mol}^{-1}$	1	
16.	(i)	I is strong electrolyte and II is weak electrolyte.	1	
	(ii)	λ^0 m indicates the limiting molar conductivity or molar conductivity at zero	1	2
		concentration.		3
	(iii)	By using Kohlrausch's law	1	
17.	(i)	$P_{Total} = P_A^0 + (P_B^0 - P_A^0) x_B$		
		Here $P_A^0 = 400 \text{ mm of Hg}$, $P_B^0 = 600 \text{ mm of Hg and } x_B = 0.4$	2	
		So, $P_{Total} = 400 + (600 - 400) \times 0.4 = 480 \text{ mm of Hg}$		_
		OR		3
		Since $x_B = 0.4$, $x_A = 1 - x_B = 1 - 0.4 = 0.6$		
		$P_A = P_A^0 x_A = 400 \times 0.6 = 240 \text{ mm of Hg}$		

		$P_B = P_B^0 x_B = 600 \times 0.4 = 240 \text{ mm of Hg}$		
		$P_B - P_B \cdot R_B = 000 \times 0.4 - 240 \text{ mm of Hg}$ $P_{\text{Total}} = P_A + P_B = 240 + 240 = 480 \text{ mm of Hg}$		
	(ii)	$(B) \Delta H_{mix} = 0$	1	
18.	(i)	Half life period is the time taken for half of a reaction to complete. Or , it is the time	1	
10.	(')	taken for the concentration of a reactant is reduced to half of its initial concentration.	-	
	(ii)	For a first order reaction, the integrated rate law equation is $k = 2.303 \log[R]_0$ (1)		
	(11)	t = [R]		
		When t = $t_{1/2}$, [R] = [R] ₀ /2		
		Substitute these values in the above equation, we get		
		$k = 2.303 \log[R]_0$		3
		$\frac{1}{t_{1/2}} \frac{1}{[R]_0/2}$	2	
		Or, $t_{1/2} = 2.303 \log 2 = 2.303 \times 0.3010$	_	
		$\frac{1}{k}$ $\frac{1}{k}$ $\frac{1}{k}$ $\frac{1}{k}$ $\frac{1}{k}$		
		Or, $t_{1/2} = 0.693$		
		k		
19.	(i)	In chemisorption, the force of attraction between adsorbent and adsorbate is		
	(.)	chemical bond. It is irreversible, highly specific, very high heat of adsorption, only	2	
		unimolecular layer of adsorption occurs, its rate increases with increase in		
		temperature etc. (Only 2 characteristics required).		3
	(ii)	Due to the greater surface area of finely divided substances/as the surface area	1	
	. ,	increases, extend of adsorption also increases.		
20.	(i)	In calcination, the ore is heated in the absence or limited supply of air but in roasting,	1	
		the ore is heated in presence of excess of air.		
	(ii)	Pig iron is the iron obtained from blast furnace. It contains about 4% C and smaller	1	2
		amounts of impurities. While wrought iron is the purest form of commercial iron.		3
	(iii)	The metallic compounds present in the earth crust are called minerals . A mineral	1	
		from which a metal can be extracted conveniently and profitably is called ore .		
21.	(i)	Chromite ore/ FeCr ₂ O ₄	1	
	(ii)	First sodium chromate is acidified with sulphuric acid to produce sodium dichromate.		
		$2Na_2CrO_4 + 2 H^+ \rightarrow Na_2Cr_2O_7 + 2 Na^+ + H_2O$		
		Then the solution of sodium dichromate is treated with potassium chloride so that		3
		orange crystals of potassium dichromate crystallise out.	2	
		$Na_2Cr_2O_7 + 2 \text{ KCl} \rightarrow K_2Cr_2O_7 + 2 \text{ NaCl}$		
		[Either explanation or equation is required] (1 Score for each step)		
22.	(i)	 A) Due to lanthanoid contraction/lanthanide contraction. 	1	
		B) This is due to their large surface area and their ability to show variable		
		oxidation state.	1	3
	(ii)	The electronic configuration of M^{2+} (Z = 27) is [Ar]3d ⁷		
		So the no. of unpaired electrons = 3	1	
		Spin only magnetic moment, $\mu_s = \sqrt{n(n+2)} = \sqrt{3(3+2)} = \sqrt{15} = 3.87$ BM		
23.	(i)	Reimer-Tiemann Reaction: Phenol when treated with chloroform in the presence of	1½	
		NaOH, followed by acidification, we get salicylaldehyde (o-hydroxybenzaldehyde).		
		Or, the equation:		3

	(ii)	$ \begin{array}{c} OH \\ \hline \\ OH \\ \hline \\ CHCl_3 + aq NaOH \end{array} \xrightarrow{\begin{subarray}{c} \overline{O} & Na^+ \\ \hline \\ CHCl_2 \\ \hline \\ H^+ \end{array} \xrightarrow{\begin{subarray}{c} OH \\ \hline \\ CHO \\ H^+ \end{array} \xrightarrow{\begin{subarray}{c} OH \\ \hline \\ CHO \\ H^+ \end{array} \xrightarrow{\begin{subarray}{c} OH \\ \hline \\ CHO \\ H^+ \end{array} \xrightarrow{\begin{subarray}{c} OH \\ \hline \\ CHO \\ H^+ \end{array} \xrightarrow{\begin{subarray}{c} OH \\ \hline \\ CHO \\ H^+ \end{array} \xrightarrow{\begin{subarray}{c} OH \\ \hline \\ CHO \\ H^+ \end{array} \xrightarrow{\begin{subarray}{c} OH \\ \hline \\ Salicylaldehyde \end{array} $	1½	
		Williamson's synthesis: Alkyl halide reacts with sodium alkoxide to form ether. This reaction is called Williamson's ether synthesis. R-X + R'-ONa → R-O-R' + NaX Or, any correct example		
24.	(i)	 A. Propene reacts with water in the presence of acid as catalyst to form propan-2-ol. Or the equation: CH₃-CH=CH₂ + H₂O <u>H</u>⁺ CH₃-CH(OH)-CH₃ B. Ethanal when reduced using lithium aluminium hydride (LiAlH₄) or sodium borohydride (NaBH₄) or on catalytic hydrogenation, we get ethanol. CH₃-CHO + [H] <u>LiAlH₄</u> CH₃-CH₂OH 	1	3
	(ii)	Zymase	1	
25.	(i) (ii)	(A) Tollens' test CH ₃ -CHO C ₆ H ₅ -CHO (Benzaldehyde) is less reactive because of the less electrophilicity of the	1 1	3
		carbonyl carbon due to resonance. Or , the polarity of the carbonyl carbon in C_6H_5 -CHO is less/due to the presence of bulky phenyl group (steric hindrance).	1	5
26.	(i) (ii)	Methanol and potassium formate Or, the equation: 2 HCHO <u>Conc. KOH</u> CH ₃ -OH + H-COOK This reaction is known as Cannizzaro reaction. 3-hydroxybutanal (β -hydroxybutyraldehyde) and but-2-enal (crotanaldehyde)	1½	3
		Or, the equation: 2CH ₃ -CHO <u>dil. NaOH</u> CH ₃ -CH(OH)-CH ₂ -CHO <u>∆</u> CH ₃ -CH=CH-CHO Ethanal 3-Hydroxybutanal But-2-enal This reaction is known as Aldol reaction (Aldol condensation reaction).	1½	
27.	(i)	Monosaccharides: Ribose, Fructose	1	
	(ii)	Disaccharides: Maltose, Sucrose Starch is the storage polysaccharide of plants while glycogen is the storage polysaccharide of animals.	1	3
	(iii)	Insulin and glucagon	1	
28.	(i)	Vinyl chloride/Chloroethene/CH ₂ =CHCl. PVC is used for making pipes, rain coats, hand	1	
	(ii)	bags, vinyl flooring etc. [Any one use is required] Tetrafluoroethene (CF ₂ =CF ₂). Teflon is used for making oil seals, gaskets and non-sticky cooking pans. [Any one use is required]	1	3
	(iii)	Adipic acid and hexamethylene diamine. Nylon 6,6 is used for making sheets, bristles for brushes and in textile industry. <i>[Any one use is required]</i>	1	
29.	(i)	A. BHT (Butylated hydroxytoluene) is used as an antioxidant in food.B. Saccharin is used as an artificial sweetener in food.	1	
	(ii)	Antidepressant drugs/Tranquilizers. E.g. Iproniazid, phenelzine, chlordiazepoxide, meprobamate, equanil etc. [Any one example is required]	2	3

		Questions 30 to 40 carry 4 scores each.		
30.	(i)	A. Schottky defect: It is the stoichiometric defect arising due to the missing of equal	1	
		no. of anions and cations from the lattice site.		
		B. Frenkel defect: It is the stoichiometric defect arising due to the shifting of a cation	1	
		from the lattice site to the interstitial site.		4
		C. f-centres: These are the electrons occupied at the anion vacancies or lattice sites.	1	4
	(ii)	(C) AgBr	1	
31.	(i)	Colligative properties are the properties which depend only on the number of solute	2	
		particles and not on their nature.		
	(ii)	Molarmass (M_2) = $w_2 RT$		
		πV		
		Here $w_2 = 1.26 \text{ g}$, V = 400 cm ³ = 0.4 L, T = 300 K, $\pi = 2.57 \times 10^{-4}$ atm and	2	4
		$R = 0.0821 \text{ Latm } \text{K}^{-1} \text{mol}^{-1}.$		
		So, $M_2 = 1.26 \times 0.0821 \times 300 = 30.19 \times 10^4$ atm		
		$2.57 \times 10^{-4} \times 0.4$		
32.	(i)	In $H_2 - O_2$ fuel cells, hydrogen and oxygen gases are bubbled through porous carbon		
		electrodes into concentrated aqueous sodium hydroxide solution. Catalysts like finely		
		divided platinum or palladium metal are filled in the electrodes. <i>Or, the Diagram:</i>		
		H ₂ O		
		Anode $ \uparrow$ + Cathode		
		Aqueous electrolyte	3	
			5	
		$H_2 \rightarrow - O_2$		
		The electrode reactions are:		4
		Cathode: $O_2(g) + 2H_2O(I) + 4e^{-} \rightarrow 4OH^{-}(aq)$		
		Anode: $2H_2(g) + 4OH^-(aq) \rightarrow 4H_2O(I) + 4e^-$		
		Overall reaction is: $2H_2(g) + O_2(g) \rightarrow 2H_2O(l)$		
	(ii)	The methods to prevent corrosion of metals are:		
	(,	a) By giving a non-metallic coating on the metal surface with paint, varnish etc.		
		b) By coating the metal surface with electropositive metal like zinc, magnesium etc.	2	
		c) By coating with anti-rust solution.		
		d) By connecting the metal with a sacrificial electrode of another metal (like Mg,		
		Zn, etc.) which corrodes itself but saves the iron object (sacrificial protection).		
		[Any 2 methods required]		
33.	(i)	The Arrhenius equation is $k = A.e^{-Ea/RT}$	1	
55.	(')	Or, $\log k = \log A - Ea/2.303RT$	1	
	(ii)			
	(11)	We know that, $\log k_2/k_1 = \frac{Ea}{2.303 \text{ R}} \frac{[T_2 - T_1]}{T_1 \cdot T_2}$		
		Here $T_1 = 298$ K, $T_2 = 308$ K, and R = 8.314 J K ⁻¹ mol ⁻¹		
				4
		Suppose $k_1 = x$, then $k_2 = 2x$	2	4
		Then,	2	
		$\frac{\log 2x}{x} = \frac{Ea}{2.303 \times 8.314} \frac{[308 - 298]}{298 \times 308}$		
		$Ea = \underline{0.3010 \times 2.303 \times 8.314 \times 298 \times 308}_{10} = 52897.78 \text{ J mol}^{-1}$		
		10	L	

	(iii)	Order	Molecularity				
		It is the sum of the powers of the	It is the total number of reactant species				
		concentration terms in the rate law	collide simultaneously in a chemical	1			
		expression	reaction				
		It is an experimental quantity	It is a theoretical quantity				
		It can be zero or fractional	It cannot be zero or fractional				
			(Any 2 required)				
34.	(i)	In lyophilic sols, the force of attraction betw					
		medium is strong. E.g. Starch solution, gum	i, gelatin, starch, rubber etc in suitable	2			
		dispersion medium.	between dispersed phase and dispersion	2			
		But in lyophobic sols, the force of attraction medium is weak. e.g. Arsenic sulphide (As ₂ :					
		sol, silver sol etc.					
	(ii)	Emulsions are of two types:					
	(")	I) Oil in water (O/W) type and			4		
		II) Water in oil (W/O) type					
		In oil in water type emulsion, oil is the disp	ersed phase and water is the dispersion				
		medium.		2			
		E.g. milk.					
		In water in oil type emulsion, water is the c	lispersed phase and oil is the dispersion				
	medium.						
		E.g. butter and cream					
35.	(i)						
	concentrated solution of NaOH at 473 – 523 K and 35 – 36 bar pressure. Alumina						
		(Al_2O_3) dissolves in NaOH to form sodium aluminate $[2Na[Al(OH)_4]$ leaving behind the					
		impurities. $(a) + 2NaOU(ax) + 2U O(b) > 2$					
		Al_2O_3 (s) + 2NaOH(aq) + 3H_2O(I) $\rightarrow 2$ The aluminate in solution is neutral	ised by passing CO_2 gas and hydrated AI_2O_3	3			
		is precipitated. The solution is seeded with		5			
		induces the precipitation.	freshiy prepared hydrated Alzo3 which		4		
		$2Na[Al(OH)_4](aq) + CO_2(g) \rightarrow Al_2O_3$	xH₂O(s) + 2NaHCO₃ (ag)				
		The hydrated alumina is filtered, dried and					
		Al ₂ O ₃ .xH ₂ O(s) <u>1470 K</u> A					
		[Either explanation or equation is required]					
	(ii)	Cryolite is added to lower the melting poin	t of alumina and to increase the	1			
		conductivity.					
36.	(i)		t 673 K and 1 bar pressure to produce XeF_2 .				
	Or, The equation: Xe (g) + F_2 (g) <u>673K, 1 bar</u> Xe F_2 (s)						
		(xenon in excess)					
		Its structure is linear as follows:					
		\odot		1	4		
		F—Xe—F					
	\bigcirc						
	(ii) (D) NeF ₂						
	(iii)						
	(,	halogen compounds are greater than that i		1			
				I –			

