SECOND YEAR HIGHER SECONDARY EXAMINATION MARCH 2017

FINALIZED SCHEME FOR VALUATION

PART III :BIOLOGY- Part A. BOTANY Code No: 5017

Max.Score:30

Qn.No		VALUE POINTS	Score	Total
1		Dormancy/Quiscent/ Seed viability	1	1
2		c) Bryophyllum	1	1
3		a)Pusa Swarnim iv) Brassica b)Pusa Snowball iii) Cauliflower c)Pusa Sawani ii) Bhindi d)Pusa Sadabahar i)Chilli OR Any two correct pairs give full score 2	1 <u>/</u> 2x4	2
4		Palindromic nucleotides/ Palindrome/ Palindromic sequence	1	1
5	a	Flowers do not open at all, the anthers and stigma lie close to each other, when the anther dehisce in the flower buds pollen grains come in contact with the stigma, there is no chance of cross-pollen landing on the stigma.(Any one of the above response)	1	1
	b	Geitonogamy is functionally cross pollination by pollinating agent/ pollination between different flowers of same plant. Genetically similar to autogamy - because pollen grains come from the same plant/ pollination	¥2	1
	~	between different flowers of same plant	1/2	

6		Pericarp/Any wall layer of pericarp	1	1
7.		a) Antigen-antibody reaction(iv)ELISAb) α-lactaibumin(iii) Rosiec) α-1-antitrypsin(ii)Emphysemad) Gene therapy(i) ADA deficiency	½x4	2
8		 Eli Lilly company prepared two DNA sequences corresponding to A and B chains of human insulin, introduced them in plasmids of E.coli to produce insulin chains A and B. Chains A and B were produced separately, extracted and combined by creating disulfide bonds to form human mature insulin. Any two points give full score 2. OR Diagrammatic sketch showing the preparation of recombinant insulin. 	1+1	2
9		Carrying capacity/ (K)	1	1
10	a	Jhum cultivation	1	1
	b	Farmers cut down the trees of the forest and burn the plant remains. The ash is used as a fertilizer and the land is used for farming or cattle grazing. After cultivation the area is left for several years for reforestation. Any two points give full score 1	1	1

11	A	 Pseudocopulation/Sexual deceit/ Mutualism/Symbiosis/Mutulastic co- evolution Commensalism/mutualism Commensalism Parasitism Parasitism Predation (Name / type of interaction (beneficial, detrimental, neutral)/ symbol for its interaction/its explanation give full score 3) 	½x6	3
	OR B	 OR Conform, regulate, partial regulate, migrate, suspend. Any three other adaptations among plants or animals give full score 3 / Diagrammatic representation showing conformers, regulators and partial regulators give full score. 	OR 1x3	OR 3
12		Biofortification	1	1
13.A	a b	Gel electrophoresis Staining the DNA with ethidium bromide followed by exposure to UV radiation/ Bright orange coloured bands of DNA can be seen in a ethidium bromide stained gel exposed to UV light.	1	3

3/7

.4		b)Submerged plant stage/rooted submerged plants	½ x4	2
		 transfer the recombinant DNA into the host. Competent host/its explanation Use vector like plasmid, bacteriophage, reterovirus etc (Any two methods of the above give full score 3) 		
		DNA . • <u>Disarmed pathogen vectors/</u> which when allowed to infect the cell and	1	
		• <u>Biolistics/ Gene gun</u> Plant cells are bombarded with high velocity micro-particles of gold or tungsten coated with	1	
	В	Recombinant DNA is directly injected into the nucleus of an animal cell.	1	
	OR	OR • Microinjection/	OR	OR
		(if correct response of any two questions give full score3)		
		DNA fragments separate according to their size/smaller fragments move farther. (give 1 Score without the answer of first part - c)	½	
	c)	500bp	1/2	Τ

	d)Reed- swamp stage e)Marsh –meadow stage g)forest/trees or a)Phytoplanktons		
	b)rooted –submerged plants c)rooted floating angiosperms d)free floating plants	Ŵ	
	e)reed –swamp f)marsh-meadow g)scrub/shrub		
	h)trees/forest Any four correct sequential stages of hydrosere except phytoplankton give full score 2		
15	Electrostatic precipitator has electrode wires that are maintained at several thousand volts which produce a corona that releases electrons. These electrons attach to dust particles giving them a net negative charge.	1+1	2
	The collecting plates are grounded and attract the charged dust particles. The velocity of air between the plates must be low enough to allow the dust to fall. Any two points give		

	full score 2			
16	 The pollen release and stigma receptivity are not synchronised/ Either the pollen is released before the stigma become receptive (or) stigma become receptive (or) stigma become receptive much before the release of pollen. The anther and stigma are placed at different positions so that the pollen cannot come in contact with the stigma of the same flower. Self- incompatibility / This is the genetic mechanism prevents self pollen from the same flower or other flowers of the same plant from fertilizing the ovules by inhibiting pollen germination or pollen tube growth in the pistil. Unisexuality / Production of unisexual flowers – male flowers with stamens /staminate flower and female flowers with pistil /pistillate flowers. Monoecious / Both the male & female flowers are present on the same plants.(Any two of the above responses give full score) 	1+1	2	

	En la de la lais	1 100180	Beeg
17		½ x4	2
	Man 4 th trophic level		as ye
	1 1 North Arm	ad Surada	1. 1.
	Fish 3 rd trophic level		
	Zooplankton 2 nd trophic level		
	Phytoplankton 1 st trophic level		46 - 11 - 12 - 14 - 14 - 14 - 14 - 14 - 14
	Any two correct sequence with or without TL give 1 score		
	Total Score	30	30

9446721871 Thossur 1. Bindu. K.C, SNHSS Innjalabuda 2. Beena kumani. R.N. 3. Upendran.k LURANE 4. Roni. M. Abraham 5. Balaby Rhom. + 6 Jan Vargler Thomas N. Chastas 7. 8, Sajini S 9. Agnes. K.M 10. Regi T. Thomas

SECOND YEAR HIGHER SECONDARY EXAMINATION MARCH 2017

SUBJECT : ZOOLOGY

2

Sec.

20. 20. ÷

CODE. NO: 5017 B

Qn No	Sub Qns	Answer Key/Value Points	Score	Total
1		Homosygous recessive phenotype is B/1/7	/ 	× 1
		A: B: C: D = 3:1:9:3		8 86 1 1
	n 1944 meter Name i	0 <u>5</u>		2
	新 (G) - 103 (G) - 103 (G	21:7:63:21 15		
		9:3:3:1	1	
z		3 or 0.20	n P rin Mila Seco	1
10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	(%)) # 1995 (10) / 100			= <u>}</u>
			*** CENE AT	1 2 . 89 (
3		in site - conservation in natural habitat	Ya	
		eg-Mational frank/wield life sanctury/ Biorfhere reserves (any one eg)	42	
		ex situ - conservation in man made/antificiel hebitats	Y2	Q
	2 14 13	eg: Zoological Jank/batanical ganden/ wild life safari fark (on any other of)	Y.2	
•		3 on Syphilus, Cronowshoea.	1	1
-80 30-1 50	10 81 1009 103 5 9 10 5 8	Os any attempt	Š. a para	
®5		3 on sind female or ony attempt	·** 1	1
6	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Colortaum / Breast milk / rothers milk	1	* / *
5843 1954 - 1971 1972 - 1971 1971 - 1971	16 B.S.		2 000 000 000 000 000 000 000 000 000 0	WE WORL
#1 "82 82				

15

Qn Sub Answer Key/Value Points Score Total No Qns LH 7 Male - Act on Leydig cells / Stimulate the særetion of androgen / stimulate spermatogenesis Y2 (any one froint) Female - Rupture of graffian follicle/ induce ormulation / maintains confus luteum Ye (any one froint) 2 FSH Male - Fets on sentoli cells, Y2 spennatogenesis, Spermiogenesis (any one) Female - grouth and development of ovarian follicles or 72 onulation (any one) 8 Disease - Sichle cell Anaemie. 1 2 Reason - Replacement of glu with realine at 6th position an point mutation/Substitution/ & GAG to GUG

45

Answer Key/Value Points Qn Sub Score Total No Qns **B**9 Frequency of M-0.75 a 142 Frequency of N - 0.25 3 The frequencies follow Handy -6 Weinberg equilibereem - so no 142 ereclution al a Adaptive radiation 3 Explanation 1 / 2_ Y2 b. Additional example any attempt give full marks 10 Presents pollution / Improves sail Structure and Junction (any hos) 2 Bacteria / Fungi or any other example 1 Assisted Reproductive Technologies of 11 any connect defenition 2 AI - Male GIFT - Female

3/5

Qn Sub **Answer Key/Value Points** Score Total No Qns 2 02 NH3, CH3, H20, H2. 1 1 12 1 1 band c or 2 13 B14 51 3' MILLIN MARK 2 Reason - Poly adenylation is always at the 3'end any other atterast give full Score 15 1 DNA finger frinting 3 2 my four relevant steps 2 as_ Openon concept Lae openon - diagnam on explanation 1 Sueitching off / stopping 16 monphine Use - Pain Killer / Sedative (for omedical guerfose) 4/5

Sub **Answer Key/Value Points** Qn Score Total No Qns aluse - (not for medical purpose) 2 1 as nareatic drug / Inaduce temporary exphorie Cany one fraint) 17 Active Ironomity Antibadies produced by self ! long lasting / slow when uppersonalities 2 eg: Vaccination (any one) Passive Ammunity Antilevadies inoculated/ Lests for short period / SRAKERAN KAC Takes time eg: Antitoxin / ante renom (any one) 5/5