Code No. 5018

Mama	_	***************************************
Name	٠	***********************

Second Year - March 2017

Time: 2½ Hours Cool-off time: 15 Minutes

Part - III

MATHEMATICS (SCIENCE)

Maximum: 80 Scores

General Instructions to Candidates:

- There is a 'cool-off time' of 15 minutes in addition to the writing time of $2\frac{1}{2}$ hrs.
- You are not allowed to write your answers not to discuss anything with others during the 'cool-off time'.
- Use the 'cool-off time' to get familiar with questions and to plan your answers.
- Read questions carefully before answering.
- All questions are compulsory and only internal choice is allowed.
- When you select a question, all the sub-questions must be answered from the same question itself.
- Calculations, figures and graphs should be shown in the answer sheet itself.
- Malayalam version of the questions is also provided.
- Give equations wherever necessary.
- Electronic devices except non-programmable calculators are not allowed in the Examination Hall.

നിർദ്ദേശങ്ങൾ :

- നിർദ്ദിഷ്ട സമയത്തിന് പുശമ 15 മിനിറ്റ് 'കൂൾ ഓഫ് ടൈം' ഉണ്ടായിരിക്കും. ഈ സമയത്ത് ചോദ്യങ്ങൾക്ക് ഉത്തരം എഴുതാനോ, മറ്റുളളവരുമായി ആശയവിനിമയം നടത്താനോ പാടില്ല.
- ഉത്തരങ്ങൾ എഴുതുന്ന തിന് മുമ്പ് ചോദ്യങ്ങൾ ശ്രദ്ധാപൂർവ്വം വായിക്കണം.
- എല്ലാ ചോദ്യങ്ങൾക്കും ഉത്തരം എഴുതണം.
- ഒരു ചോദ്യനമ്പർ ഉത്തരമെഴുതാൻ തെരഞ്ഞെടുത്തു കഴിഞ്ഞാൽ ഉപചോദ്യങ്ങളും അതേ ചോദ്യനമ്പരിൽ നിന്ന് തന്നെ തെരഞ്ഞെടുക്കേണ്ടതാണ്.
- കണക്ക് കൂട്ടലുകൾ, ചിത്രങ്ങൾ, ഗ്രാഫുകൾ എന്നിവ ഉത്തരപേപ്പറിൽ തന്നെ ഉണ്ടായിരിക്കണം.
- ചോദ്യങ്ങൾ മലയാളത്തിലും നൽകിയിട്ടുണ്ട്.
- ആവശ്യമുള്ള സ്ഥലത്ത് സമവാക്യങ്ങൾ കൊടുക്കണം.
- പ്രോഗ്രാമുകൾ ചെയ്യാനാകാത്ത കാൽക്കുലേറ്ററുകൾ ഒഴികെയുള്ള ഒരു ഇലക്ട്രോണിക് ഉപകരണവും പരീക്ഷാഹാളിൽ ഉപയോഗിക്കുവാൻ പാടില്ല.

- 1. (a) Let R be a relation defined on $A = \{1, 2, 3\}$ by $R = \{(1, 3), (3, 1), (2, 2)\}$. R is
 - (a) Reflexive

(b) Symmetric /

(c) Transitive

- (d) Reflexive but not transitive
- (Score: 1)

(b) Find fog and gof if f(x) = |x+1| and g(x) = 2x - 1.

(Scores: 2)

- (c) Let * be a binary operation defined on $N \times N$ by
 - (a, b) * (c, d) = (a + c, b + d).

Find the identity element for * if it exists.

(Scores: 2)

- 2. (a) Principal value of $\cot^{-1}\left(-\frac{1}{\sqrt{3}}\right)$ is
 - (a) $\frac{\pi}{3}$

(b) $-\frac{n}{3}$

(c) $\frac{\pi}{6}$

d) $\frac{2\pi}{3}$

(Score: 1)

(b) Solve: $\tan^{-1}\left(\frac{x-1}{x-2}\right) + \tan^{-1}\left(\frac{x+1}{x-2}\right) = \frac{\pi}{4}$

- (Scores: 3)
- 3. (a) The value of k such that the matrix $\begin{pmatrix} 1 & k \\ -k & 1 \end{pmatrix}$ is symmetric is
 - (a) 0

(b) (1)-

(c) -1

(d) 2

- (Score: 1)
- (b) If $A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$ then prove that $A^2 = \begin{bmatrix} \cos 2\theta & \sin 2\theta \\ -\sin 2\theta & \cos 2\theta \end{bmatrix}$. (Scores: 3)
- (c) If $A = \begin{bmatrix} 1 & 3 \\ 4 & 1 \end{bmatrix}$, then find |3A'|.

(Scores: 2)

- 4. (a) If $A = \begin{bmatrix} a & 1 \\ 1 & 0 \end{bmatrix}$ is such that $A^2 = I$ then a equals
 - (a) 1 (c) 0

- (b) -1
- 0

(Score: 1)

(b) Solve the system of equations:

$$x - y + z = 4$$

$$2x + y - 3z = 0$$

$$x + y + z = 2$$
 using matrix method.

(Scores: 4)

5. (a) Find the values of a and b such that the function

$$f(x) = \begin{cases} 5a & x \le 0 \\ a \sin x + \cos x & 0 < x < \frac{\pi}{2} \\ b - \frac{\pi}{2} & x \ge \frac{\pi}{2} \end{cases}$$
 (Scores: 3)

(b) Find $\frac{dy}{dx}$ if $(\sin x)^{\cos y} = (\cos y)^{\sin x}$.

(Scores: 3)

- 6. (a) Slope of the normal to the curve $y^2 = 4x$ at (1, 2) is
 - (a) 1

(b) $\frac{1}{2}$

(c) 2

(d) -1

(Score: 1)

- (b) Find the interval in which $2x^3 + 9x^2 + 12x 1$ is strictly increasing.
- (Scores: 4)

OR

- (a) The rate of change of volume of a sphere with respect to its radius when radius is 1 unit
 - (a) 4π

(b) 2π

(c) π

(d) $\frac{\pi}{2}$

(Score: 1)

- (b) Find two positive numbers whose sum is 16 and the sum of whose cubes is minimum. (Scores: 4)
- 7. Find the following:

(a)
$$\int \frac{1}{x(x^7+1)} \, \mathrm{d}x$$

(Scores: 3)

(b)
$$\int_{1}^{4} |x-2| \, \mathrm{d}x$$

(Scores: 3)

8. Evaluate
$$\int_{0}^{\pi/2} \log \sin x \, dx.$$

(Scores: 4)

OR

Evaluate $\int_{0}^{4} x^{2} dx$ as the limit of a sum.

(Scores: 4)

- 9. (a) Area bounded by the curves $y = \cos x$, $x = \frac{\pi}{2}$, x = 0, y = 0 is
 - (a) $\frac{1}{2}$

(b) $\frac{2}{x}$

(c) 1

(1) $\frac{\pi}{2}$

(Score:1)

(b) Find the area between the curves $y^2 = 4ax$ and $x^2 = 4ay$, a > 0.

(Scores: 5)

- 10. (a) The order of the differential equation $x^4 \frac{d^2y}{dx^2} = 1 + \left(\frac{dy}{dx}\right)^3$ is
 - (a)

(b) 3

(c) 4

(d) 2

(Score: 1)

(b) Find the particular solution of the differential equation

$$(1+x^2)\frac{d^2y}{dx^2} + 2xy = \frac{1}{1+x^2}$$
, y = 0 when x = 1.

(Scores: 5)

- 11. (a) The projection of the vector $2\hat{i} + 3\hat{j} + 2\hat{k}$ on the vector $\hat{i} + \hat{j} + \hat{k}$ is
 - (a) $\frac{3}{\sqrt{3}}$

(b) $\frac{7}{\sqrt{3}}$

(c) $\frac{3}{\sqrt{17}}$

(d) $\frac{7}{\sqrt{17}}$

(Score: 1)

(b) Find the area of a parallelogram whose adjacent sides are the vectors $2\hat{i} + \hat{j} + \hat{k}$ and $\hat{i} - \hat{j}$. (Scores: 2)

12.	(a)	The angle between the vectors $\hat{i} + \hat{j}$ and $\hat{j} + \hat{k}$ is							
		(a) 60°	(b)	30°					
		(c) 45°	(d)	90°	(Score : 1				
	(b)	If \vec{a} , \vec{b} , \vec{c} are unit vectors such that $\vec{a} + \vec{b} + \vec{c} = 0$, find the value of							
		$\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$			(Scores: 4				
13.	(a)	The line $x - 1 = y = z$ is perpendicular to the line							
		(a) $\frac{x-2}{1} = \frac{y-1}{2} = \frac{z}{-3}$	(b)	$x - 2 = \mathbf{y}_1 - 2 = \mathbf{z}$					
		(c) $\frac{x-2}{1} = \frac{y-1}{2} = \frac{z}{3}$	(b)	$x = y = \frac{z}{2}$	(Score: 1)				
	(b)	Find the shortest distance between the	e lines	S					
		$\overline{r} = i + 2j + 3k + \lambda(i + j + k)$							
		$\overline{r} = i + j + k + \mu(i + j + k)$			(Scores: 3)				
4.	(a)	Distance of the point (0, 9, 1) from the	e plan	ex + y + z = 3.					
		(a) $\frac{1}{\sqrt{3}}$		$\frac{2}{\sqrt{3}}$					
		(c) $\sqrt{3}$	(d)	$\frac{\sqrt{3}}{2}$	(Score: 1)				
	(b)	Find the equation of the plane thro x + y + z = 1 and $2x + 3y + 4z = 5$ wh	ough tich is	the line of intersection perpendicular to $x - y + y$	of the planes $z = 0$. (Scores: 3)				
5.	Cons	sider the linear programming problem:							
		imize Z = 50x + 40y							
	Subj	ect to the constraints							
		$x + 2y \ge 10$							
		$3x + 4y \le 24$							
		$x \ge 0, y \ge 0$							
	(a)	Find the feasible region.			(Scores: 3)				
	(b)	Find the corner points of the feasible r	egion.	· · ·	(Scores: 2)				
	(c)	Find the maximum value of Z.			(Score: 1)				

- If A and B are two events such that $A \subset B$ and $P(A) \neq 0$ then P(A/B) is

(c) $\frac{1}{P(A)}$

(Score: 1)

- There are two identical bags. Bag I contains 3 red and 4 block balls while Bag II contains 5 red and 4 black balls. One ball is drawn at random from one of the
 - Find the probability that the ball drawn is red. (i)

(Scores: 2)

If the ball drawn is red what is the probability that it was drawn from bag I? (Scores: 2)

OR

Consider the following probability distribution of a random variable X.

X

- 2

P(X)

 $\frac{1}{16}$ $\frac{2}{16}$ K $\frac{5}{16}$ $\frac{1}{16}$

Find the value of K. (i)

(Score: 1)

Determine the Mean and Variance of X.

(Scores: 4)