Name : \qquad

FIRST YEAR HIGHER SECONDARY MODEL EXAMINATION, JUNE 2022
 Part - III
 MATHEMATICS (SCIENCE)
 Maximum : 60 Scores

Time : 2 Hours
Cool-off Time : 15 Minutes

General Instructions to Candidates :

- There is a 'Cool off time' of 15 minutes in addition to the writing time.
- Read questions carefully before answering.
- Calculations, figures and graphs should be shown in the answer sheet itself.
- Malayalam version of the questions is also provided.
- Give equations wherever necessary.
- Electronic devices except non programmable calculators are not allowed in the Examination Hall.

Answer any 6 questions from 1 to 8. Each carries 3 scores.

1. a) If a set A has 2 elements, then the number of subsets of A is \qquad
i) 2
ii) 4
iii) 6
iv) 8
b) Write all subsets of $\{1,2\}$.
c) Write the interval $(6,12]$ in set-builder form.
2. a) $\frac{\pi}{4}$ radian $=\quad$ degree.
b) If $\sin x=\frac{3}{5}, x$ lies in the second quadrant, find the values of $\cos x$ and $\tan x$.
3. a) Write the first four terms of the sequence whose $n^{\text {th }}$ term is $a_{n}=5 n+1$.
b) Find the sum of the first n terms of the above sequence.
4. a) Find the slope of the line passing through the points $(2,1)$ and $(4,5)$.
b) Find the value of x for which the points $(x,-1),(2,1)$ and $(4,5)$ are collinear.
 $(6 \times 3=18)$
 \qquad CDemjm.
i) 2
ii) 4
iii) 6
iv) 8

5. a) $\frac{\pi}{4}$ बกณูกอก $=$ \qquad तulcos.
 నीల கஸைృన/కीவைృக.

 Aตรูన
6. Find the equation of the circles with radius 5 whose centres lie on the x -axis and passing through the point $(2,3)$.
7. a) Coordinate planes divide the space into \qquad octants.
b) Find the distance between the points $(-1,3,-4)$ and $(1,-3,4)$.
8. Evaluate :
a) $\operatorname{Lt}_{\mathrm{x} \rightarrow 4} \frac{4 \mathrm{x}+3}{\mathrm{x}-2}$
b) $\operatorname{Lt}_{x \rightarrow 1} \frac{x^{3}-1}{x^{2}-1}$
9. a) Write the negation of the statement ' $\sqrt{7}$ is rational'.
b) Write the contrapositive and converse of the statement 'if a number n is even, then n^{2} is even'.

Answer any 6 questions from 9 to 17. Each carries 4 scores.
9. a) If A and B are two sets such that $A \subset B$, then $A \cup B=$ \qquad
b) If $U=\{1,2,3,4,5,6,7,8,9\}, A=\{2,4,6,8\}$ and $B=\{2,3,5,7\}$, find :
i) A^{\prime} and B^{\prime}
ii) $A \cup B$ and
iii) Verify that $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$

｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜

Score

 \qquad

7．నीల கமறృ円．
a） $\operatorname{Lt}_{\mathrm{x} \rightarrow 4} \frac{4 \mathrm{x}+3}{\mathrm{x}-2}$
b） $\operatorname{Lt}_{x \rightarrow 1} \frac{x^{3}-1}{x^{2}-1}$

8．a）＇$\sqrt{7}$ is rational＇п্毋）

b） $\mathrm{U}=\{1,2,3,4,5,6,7,8,9\}, \mathrm{A}=\{2,4,6,8\}, \mathrm{B}=\{2,3,5,7\}$ ，ศெயை万8：
i） $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}$

10. a) Let $A=\{1,2,3,4, \ldots ., 14\}$, define a relation R from A to A by
$R=\{(x, y): y=3 x$, where $x, y \in A\}$. Write R in roster form. Write down the domain and range of R.
b) A function f is defined by $f(x)=2 x-5$. Find the value of $f(0)$.
11. Consider the statement

$$
P(n): 1+3+3^{2}+\ldots+3^{(n-1)}=\frac{3^{n}-1}{2}
$$

a) Show that $P(1)$ is true.
b) Prove by the principle of Mathematical Induction that $\mathrm{P}(\mathrm{n})$ is true for all $n \in N$.
12. a) Evaluate $\frac{7!}{5!}$.
b) How many 4 digit numbers can be formed by using the digits 1 to 9 if repetition of digits is not allowed?
c) ${ }^{17} \mathrm{C}_{17}=$ \qquad
13. a) The number of terms in the expansion of $(a+b)^{4}$ is
b) Expand $\left(x^{2}+\frac{3}{x}\right)^{4}, x \neq 0$.

||||||||||||||||||||||||||||

Score

c) ${ }^{17} \mathrm{C}_{17}=$ \qquad
 \qquad ก๐)

14. The sum of first three terms of a Geometric Progression is $\frac{39}{10}$ and their product is 1 . Find the common ratio and the terms of the Geometric Progression.
15. a) Write the equation of the x-axis .
b) Equation of a line is $3 x+2 y-12=0$. Find its

> i) slope and
ii) x and y intercepts.
16. Find the coordinates of the foci. The eccentricity and the length of the latus rectum of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$.
17. One card is drawn from a well shuffled deck of 52 cards. If each outcome is equally likely, calculate the probability that the card will be
i) a diamond
ii) not an ace
iii) a black card

Answer any 3 questions from 18 to 22. Each carries 6 scores.
18. a) Prove that,

$$
\begin{equation*}
\frac{\tan \left(\frac{\pi}{4}+x\right)}{\tan \left(\frac{\pi}{4}-x\right)}=\left(\frac{1+\tan x}{1-\tan x}\right)^{2} \tag{3}
\end{equation*}
$$

b) Find the general solution for the equation $\cos 3 x+\cos x-\cos 2 x=0$.

Score

i）دロバ

18 வృயnsి 22 నదவ ఆఎ

b） $\cos 3 x+\cos x-\cos 2 x=0$ пெر
19. a) The value of i^{4} is
b) Find the multiplicative inverse of $1-i$ in $a+i b$ form.
c) Find the polar form of $1-\mathrm{i}$.
20. Solve the system of inequalities graphically.

$$
\begin{align*}
& x+2 y \leq 8 \\
& 2 x+y \leq 8 \\
& x \geq 0, y \geq 0 . \tag{6}
\end{align*}
$$

21. a) Find the derivative of $\sin x$ from first principle.
b) Find the derivative of $5 \sin x-6 \cos x+7$.
22. Consider the following data :

Classes:	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
Frequency :	5	8	15	16	6

Find:
i) mean
ii) Variance and standard deviation.
19. a) i^{4} બุุ กीల \qquad जصぁృ子M.

$x+2 y \leq 8$
$2 x+y \leq 8$
$x \geq 0, y \geq 0$.

Classes : $\begin{array}{llllll} & 0-10 & 10-20 & 20-30 & 30-40 & 40-50\end{array}$

Frequency :	5	8	15	16	6

