PREPARED BY: HIGHER SECONDARY PHYSICS TEACHERS ASSOCIATION KANNUR (HSPTA KANNUR)

FIRST YEAR HIGHER SECONDARY MODEL EXAMINATION, JUNE 2022

Part III PHYSICS Maximum: 60 Score ANSWER KEY (unofficial)

ME 624 Date: 06.06.2022

HSPTA KANNUR

Qn No.	Qn Sub No.	Scoring Indicators	Split score	Total
-----------	------------------	--------------------	----------------	-------

Answer any 5 questions from 1 to 7. Each carries 1 score	[5 x 1 = 5]
--	-------------

1	c) Strong Nuclear Force	1	1
2	b) 10 ⁻¹⁰ m	1	1
3	b) Zero	1	1
4	c) Law of inertia	1	1
5	a) Young's modulus	1	1
6	a) Pascal's law	1	1
7	b) sublimation	1	1

Answer any 5 questions from 8 to 14. Each carries 2 scores [5 x 2 = 10]

8		According to Newton's second law, $F = \frac{dp}{dt}$ $\Rightarrow F dt = dp$ i.e., <u>I=dp</u> i.e., Impulse = change in momentum	1	2
9		S_1 = Yield Strength	1	2
		$S_2 = Ultimate tensile strength$	1	2
10	i)	 a) Weight of the body(Fg), acting in the downward direction. b) Buoyant force (Fb), acting in the upward direction. c) Viscous force(Fv) acting in the upward direction. 	1	2
	ii)	Terminal Velocity (V_t)	1	

	ANSWER KEY	(unofficial)
--	------------	--------------

HSPTA KANNUR

Qn No.	Qn Sub No.	Scoring Indicators	Split score	Total
-----------	------------------	--------------------	----------------	-------

11	$T_{F} = \frac{9}{5} T_{c} + 32$ $T_{F} = \frac{9}{5} \times \frac{-56.6}{+32} \qquad \text{OR} \ \left(\frac{Tc}{100} = \frac{Tf - 32}{180}\right)$ $T_{F} = -69.88 \text{ F}$	1	2
12	The law of equipartition of energy states that "If a system is in equilibrium at absolute temperature T, the total energy is distributed equally in different degrees of freedom, the energy in each degree of freedom being equal to $\frac{1}{2}k_BT$.	2	2
13	$a = \frac{dv}{dt}$ $a = \frac{d}{dt} - \omega A \sin(\omega t + \phi)$ $a = -\omega A \cos(\omega t + \phi) x \omega$ $a = -\omega^{2} A \cos(\omega t + \phi)$ $a = -\omega^{2} x$	1	2
14	When two waves of same amplitude and frequency travelling in opposite directions superimpose, the resulting wave pattern does not move to either sides. This pattern is called standing waves.	2	2

Answer any 6 questions from 15 to 22. Each carries 3 scores [6 x 3= 18]

15	i) ii)	Principle of Homogeneity states that "The dimensions of fundamental physical quantities on both sides of an equation should be the same". Dimension of $[mv^2] = M^1(L^1T^{-1})^2$	1	
		$= [M^{1}L^{2}T^{-2}]$	1	3
		Dimension of [mgh] = $[M^1L^1T^{-2}L^1]$	1	
		$= [M^{1}L^{2}T^{-2}]$		
		Both the terms have the same dimension. Therefore by the principle of homogeneity the equation is correct.		

ANSWER KEY (unofficial)

HSPTA KANNUR

Qn No.	Qn Sub No.	Scoring Indicators	Split score	Total	
-----------	------------------	--------------------	----------------	-------	--

ANSWER KEY (unofficial)

HSPTA KANNUR

Qn No.	Qn Sub No.	Scoring Indicators	Split score	Total	
-----------	------------------	--------------------	----------------	-------	--

ANSWER KEY (unofficial)

HSPTA KANNUR

Qn No.	Qn Sub No.	Scoring Indicators	Split score	Total
-----------	------------------	--------------------	----------------	-------

19	$\vec{F} \cdot \vec{d} = F d \cos \theta$		
	$\cos\theta = \frac{\vec{F} \cdot \vec{d}}{\vec{r}}$ (1)	1	
	$\vec{F} \cdot \vec{d} = F_x d_x + F_y d_y + F_z d_z$		
	= (3 x5) + (4x4) + (-5 x3)	1/2	
	$\mathbf{F} = 16 \mathbf{unit}$		
	$\mathbf{F} = \sqrt{F_x^2 + F_y^2 + F_z^2} = \sqrt{3^2 + 4^2 + (-5)^2}$		
	$=\sqrt{9+16+25}$ F $=\sqrt{50}$ unit	1/	3
		/2	5
	$\mathbf{a} = \sqrt{d_x^2 + d_y^2 + d_z^2} = \sqrt{5^2 + 4^2 + 3^2}$ $= \sqrt{25 + 16 + 9}$		
	d=√50unit	1/2	
	Substituting the values in eq(1)		
	$\cos\theta = \frac{16}{\sqrt{50}\sqrt{50}} = \frac{16}{50} = 0.32$		
	$\theta = \cos^{-1} 0.32$	1/2	
	= 71.33°		
20	$\vec{l} = \vec{r} \times \vec{p}$		
	$d\vec{l} = d \vec{l} \times \vec{d}$	1	
	$\frac{dt}{dt} = \frac{dt}{dt} (1 \land p)$	17	
	$\frac{dt}{dt} = \frac{dt}{dt} \times \vec{p} + \vec{r} \times \frac{dp}{dt}$	1/2	
	$\vec{p} = \vec{m} \vec{v} , \frac{d\vec{r}}{dt} = \vec{v}, \frac{d\vec{p}}{dt} = \vec{F}$		
	$\frac{d\vec{l}}{d\vec{l}} = \vec{v} \times \vec{m} \vec{v} + \vec{r} \times \vec{F}$	1/2	
	$\vec{v} \times \vec{v} = 0 (\vec{r} \times \vec{F} = \vec{\tau})$		3
	$\frac{d\vec{l}}{d\vec{l}} = 0 + \vec{\tau}$	1/2	
	$\frac{dt}{dt} = \vec{\tau}$	1/2	
	$\vec{\tau} = \frac{dl}{dt}$		

ANSWER KEY (uno	fficial)
-----------------	----------

HSPTA KANNUR

Qn No.	Qn Sub No.	Scoring Indicators	Split score	Total	
-----------	------------------	--------------------	----------------	-------	--

21	i. li.	Poles At a height 'h' $g_h = g \left[\frac{R}{R+h}\right]^2$ When $g_h = \frac{g}{2}$ $\frac{g}{2} = g \left[\frac{R}{R+h}\right]^2$ $\frac{1}{2} = \left[\frac{R}{R+h}\right]^2$ $\frac{1}{\sqrt{2}} = \frac{R}{R+h}$ $R+h = \sqrt{2}R$ $h = (\sqrt{2}-1)R$ Therefore $h = (1.44-1)x 6400 = 2650 km$.	2	3
22	i. ii.	The type of flow in which each particle passing through a point has the same velocity and direction as its predecessor is called streamline flow or steady flow. If the speed increases beyond a certain value the flow becomes irregular and is called turbulent flow . In turbulent flow each particle crossing a certain point may have different velocity and direction. The velocity beyond which streamline flow changes in to turbulent flow is called critical velocity.	2	3

Answer any 3 questions from 23 to 27. Each carries 4 scores [3 x 4 = 12]

23 i) Since the body is released, u=0 For an object accelerating downward under gravity a = g, 1 v = gt1 $v^2 = 2gh$ 1 4 ii) $h = \frac{1}{2} gt^2$ 1 Time/s 24 i) Work done is the scalar product of the force vector and 1 displacement vector. $W = \vec{F} \cdot \vec{S}$

FIRST YEAR HIGHER SECONDARY MODEL EXAMINATION, JUNE 2022 ANSWER KEY (unofficial) HSPTA I

HSPTA KANNUR

Qn	Qn	Scoring Indicators	Split	Total
No.	No.		score	

	ii) iii)	 a) When F and S are perpendicular to each other, b) When the displacement is zero Work done by frictional force, work done by a man lowering a body or other relevant examples. 	2 1	4
25		Explain the functions of source, working substance and sink. Mention the four processes-isothermal expansion, adiabatic expansion, isothermal compression and adiabatic compression.	1 2	4
26	i) ii)	A particle is said to have SHM if it moves to and fro under the action of a restoring force which is directly proportional to the displacement and is directed towards the equilibrium position. $F \propto -x$ OR $F = -kx$ the projection of a body in circular motion y $wt+\phi$ $x(t)$ p x x $x(t)$ p x	1	4

	ANSWER KEY (unofficial) HSPTA KANNU				
Qn No.	Qn Sub No.	Scoring Indicators	0	Split score	Total

Answer any 3 questions from 28 to 32. Each carries 5 scores [3 x 5 = 15]

ANSWER KEY (unofficial)

HSPTA KANNUR

Qn No.	Qn Sub No.	Scoring Indicators	Split score	Total	
-----------	------------------	--------------------	----------------	-------	--

29	i)	Weight ,mg Normal force Frictional force Centripetal force $a=v^2/R$	1	
	ii)	$N = mg; f_s = \frac{mv^2}{r}; \mu_s N = \frac{mv^2}{r}$	1+1	5
		$\mu_s mg = \frac{mv^2}{r}; v^2 = \mu_s rg$	1	
		$v = \sqrt{\mu_s rg}$	1	
30		Statement The total energy of an incompressible non viscous fluid in a steady flow from one point to another is a constant. It is a statement of conservation of energy. Work done for small displacements Δx at both ends are $W_1=P_1A_1v\Delta t \& W_2=P_2A_2v\Delta t$ Total work done $W=(P_1-P_2)\Delta V$. This work done increases the KE and PE of the fluids. This are $\Delta U=\rho\Delta V g(h_2-h_1) \& \Delta K=(1/2)\rho\Delta V(v_2^2-v_1^2)$ Then by conservation of energy $W=\Delta U+\Delta K$ ie $(P_1-P_2)\Delta V=\rho\Delta V g(h_2-h_1)+(1/2)\rho\Delta V(v_2^2-v_1^2)$ Divide through out by ΔV , gives $P_1-P_2=\rho g(h_2-h_1)+(1/2)\rho(v_2^2-v_1^2)$ $P_1+(1/2)\rho v_1^2+\rho gh_1=P_2+(1/2)\rho v_2^2+\rho gh_2$ ie $P+(1/2)\rho v^2+\rho gh = constant$ This is the Bernouli's equation	1 1 3	5

10

FIRST YEAR HIGHER SECONDARY MODEL EXAMINATION, JUNE 2022 ANSWER KEY (unofficial) HSPTA KANNUR

Qn No.	Qn Sub No.	ors Split score	Total
-----------	------------------	-----------------	-------

31	i)	The speed with which a satellite revolves around a planet.	1	
	ii)	The centripetal force required for the orbital motion of the satellite is provided by the gravitational force between satellite and the planet. $\frac{mv}{R+h}^{2} = \frac{GMm}{(R+h)^{2}}$ Where m- mass of the satellite, v-velocity	1	
		• Therefore the orbital velocity is given by $v = \sqrt{\frac{GM}{R+h}}$	1	
		For a satellite very close to earth $h = 0$ $v_o = \sqrt{\frac{GM}{R}}$		5
		We have $GM = gR^2$, thus $v_o = \sqrt{gR}$	1	
	iii)	$v_e = \sqrt{2}v_o$	1	
32	i) ii)	Moment of Inertia and Torque Cosider a particle of mass m rotating about an axis of radius r with angular velocity ω	2	
		The kinetic energy of motion of this particle is $kE = \frac{1}{2}mv^2$	1	5
		But $v = r \omega$ $kE = \frac{1}{2}mr^2\omega^2$ $I = mr^2$	1	
		Rotational kE = $\frac{1}{2}$ I ω^2	1	
		1		

XXXXXXXXXX

HSPTA KANNUR