SECOND YEAR HIGHER SECONDARY SAMPLE QUESTION PAPER -2023

Part III
MATHEMATICS (SCIENCE)

Time:2Hours
Cool-off time:15 minutes
Maximum:60 scores

General Instructions to Candidates :

- There is a Cool-off time of 15 minutes in addition to the writing time.
- Use the Cool-off time to get familiar with questions and to plan your answers.
- Read questions carefully before answering.
- Read the instructions carefully.
- Calculations, figures and graphs should be shown in the answer sheet itself.
- Give equations wherever necessary.
- Electronic devices except non-programmable calculators are not allowed in the Examination Hall.

PART-1

Answer any six questions from 1 to 8 each carries 3 score.
$(6 \times 3=18)$

1. Let $R: R \rightarrow R$ such that $R=\{(x, y): \mathrm{x}-\mathrm{y}$ is divisible by 2$\}$. Show that R is an equivalance relation.
2. Express the matrix $\mathrm{A}=\left[\begin{array}{ccc}3 & 5 & 6 \\ 1 & -1 & 5 \\ 2 & 3 & -1\end{array}\right]$ as the sum of symmetric and skew symmetric matrices.
3. If $\mathrm{A}=\left|\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right|$ show that $A^{2}-5 A+7 I=0$
4. (a) Find $\frac{d y}{d \theta}$ if $y=a(\theta+\sin \theta)$
(b) Find the value of K so that the function

$$
f(x)=\left\{\begin{array}{ll}
2 k x+3 & \text { if } x \leq 5 \tag{1}\\
3 x-8 & \text { if } x>5
\end{array} \quad\right. \text { is continous. }
$$

5. If $y=\sin ^{-1} x$, then show that $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}=0$
6. (a) The direction ratios of the line $\frac{x-3}{4}=\frac{y-2}{1}=\frac{z+1}{3}$ is
a) $(3,2,-1)$
b) $(-3,2,1)$
c) $(4,1,3)$
d) $(1,0,0)$)
(b) Find equation of the straight line passing through the point $(2,-3,1)$ and is parallel to the above line .
7. (a) If $\vec{a}=2 \hat{i}-\hat{j}+3 \hat{k}$ and $\vec{b}=4 \lambda \hat{i}+2 \hat{j}-2 \hat{k}$ are perpendicular to each other then find λ (1)
(b) Find the area of the parallelogram having adjecent sides \vec{a} and \vec{b}
8. (a) A and B are two independent events then $P(A \cap B)=\ldots \ldots$.
(b) Probabilitry of solving a specific problem independently by A and B are $\frac{1}{2}$ and $\frac{1}{3}$ respectively. If both try to solve the problem independently. Find the probability that exactly one of them solve the problem .

Answer any 6 questions from 9-16. Each carries 4 scores
 $(6 \times 4=24)$

9. (a) Let R be the relation in the set set of natural numbers N given by $R=\{(a, b): a=b-2, b>6\}$ choose the correct answer
a) $(2,4) \in R$
b) $(3,8) \in R$
c) $(6,8) \in R$
d) $(8,7) \in R$
(b) Let $f: R \rightarrow R$ defined by $f(x)=3-4 x$ state whether the function is bijective . Justify your answer.
10. (a) Write the principal value of $\sin ^{-1} \sin \left(\frac{2 \pi}{3}\right)$
(b) Prove that $\sin ^{-1}\left(3 x-4 x^{3}\right)=3 \sin ^{-1} x$
11. (a) Construct a 2×2 matrix $A=\left[a_{i j}\right]$ whose elements are given by $a_{i j}=\frac{1}{2}|i-3 j|$
(b) If $\mathrm{A}=\left[\begin{array}{ll}3 & -2 \\ 4 & -2\end{array}\right]$ and $\mathrm{I}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ Find K so that $A^{2}=K A-2 I$
12. (a) Write the order and degree of the differential equation $\left(\frac{d^{2} s}{d t^{2}}\right)^{2}+\left(\frac{d s}{d t}\right)^{3}+4=0$
(b) Consider the differential equation $\frac{d y}{d x}+\frac{2 x y}{1+x^{2}}=\frac{\cot x}{1+x^{2}}$
13. (a) Area of the region bounded by the curve $y=f(x), \mathrm{x}$ axis and between the ordinates $x=a$ and $x=b$ is $\ldots \ldots$.
(b) using integration find the area of the region bounded by the circle $(x-2)^{2}+y^{2}=4$.
14. Find the shortest distance between the lines whose vector eqautions are $\vec{r}=\hat{i}+\hat{j}+\hat{k}+\lambda(2 \hat{i}-\hat{j}+\hat{k})$ and $\vec{r}=2 \hat{i}-\hat{j}-\hat{k}+\mu(3 \hat{i}-5 \hat{j}+2 \hat{k})$
15. A bag contains 5 red and 6 black balls and another bag contains 4 red and 7 black balls .One bag is chosen at random and a ball is drawn from it then find
(a) the probability that drawn ball is red.
(b) the probability that the selected ball is from bag 2.
16. If $A(1,2,4, B(-2,1,3$ are two points
(a) Find $\overrightarrow{A B}$
(b) Find unit vector along $\overrightarrow{A B}$
(c) Find λ when the projection of $\vec{a}=\hat{i}+\lambda \hat{j}+4 \hat{k}$ on $\vec{r}=6 \hat{i}+2 \hat{j}+3 \hat{k}$ is 8 units.

Answer any 3 questions from 17-20. Each carries 6 scores
17. Solve the following system of equations by matrix method
$3 x-2 y+3 z=8$
$2 x+y-z=1$
$4 x-3 y+2 z=4$
18. (a) Find the point of local maxima and local minima of the functio $f(x)$, graph of its derivative

(b) A stone is droped in to a quiet lake and waves move in a circle at a speed of 4 cm per second. At the instant when the radius of circular wave is 10 cm , how fast is enclosed area increasing.
(c) Find the intervals in which the function f given by $f(x)=4 x^{3}-6 x^{2}-72 x+30$ is
a) increasing
b) decreasing
19. (a) $\int_{0}^{\frac{\pi}{2}} x \sin x d x$
(b) $\int \frac{1}{(x+1)(x+2)}, d x$
(c) If $\frac{d}{d x} f(x)=\frac{t a n^{-1}}{1+x^{2}}$ then find $\mathrm{f}(\mathrm{x})$
20. Solve the following linear programing problem graphically :

Maximise $Z=x+2 y$ subject to the constraints
$x+2 y \geq 100, \quad 2 x-y \leq 0,2 x+y \leq 200 \quad x \geq 0 y \geq 0$.

Prepared by
SREEHARI BALAKRISHNAKURUP (HSST,MOONNIYUR HSS)
NIZA F(HSST GHSS THIRURANGADI)
KUSIMA P(HSST,GHSS TIRURANGADI)
BINDU GM(HSST,KHMHSS VALAKKULAM)
PREBHAKUMARY.R(HSST KMHSS KUTTOOR NORTH)
FASILA KP(HSST , GVHSS CHETTIYAN KINAR)
JYOTHIRMAYI P V(HSST ,CPPHMHSS,OZHUR)
PRATHIBHA R (HSST ,PPTMYHSS CHERUR
FARHATH NT(HSST , PPTMYHSS CHERUR)

