SECOND YEAR HIGHER SECONDARY SAMPLE QUESTION PAPER 2023 MATHEMATICS PARTIII

Time: 2 Hours
Cool-off time: 15 minutes
Maximum: 60 Scores

General Instructions to Candidates:

- There is a 'Cool-off time' of 15 minutes in addition to the writing time.
- Use the 'Cool-off time' to get familiar with questions and to plan your answers.
- Read questions carefully before answering.
- Read the instructions carefully.
- Calculations, figures and graphsshould be shown in the answer sheet itself.
- Malayalam version of the questions is also provided.
- Give equations wherever necessary.
- Electronic devices except non-programmable calculators are not allowed in the examination hall

- 8, ロß

Answer any 6 questions from 1 to 8. Each carries 3 scores

1) (i) The relation $R=\{(1,1),(2,2),(3,3),(1,2),(2,3)\}$ on the set $A=\{1,2,3\}$ is
a) Reflexive but neither symmetric nor transitive
b) Symmetric and transitive but not reflexive
c) An equivalence relation
d) Symmetric only
(ii) Show that the relation R on the set of Real numbers defined as $R=\left\{(a, b): a \leq b^{2}\right\}$ is neither reflexive nor symmetric and nor transitive.
2) Express $A=\left[\begin{array}{ccc}2 & 5 & 3 \\ 4 & 6 & 1 \\ 1 & -2 & 3\end{array}\right]$ as the sum of symmetric and skew symmetric matrix.
3) (i) A is a singular matrix , then $|A|=$ \qquad
(ii) Using determinant find the area of the triangle with vertices $(2,7),(1,1),(10,8)$
4) A stone is dropped into a quite lake and waves move in circles at the rate of $4 \mathrm{~cm} / \mathrm{sec}$. At what rate is the enclosed area increasing when the radius is 10 cm .
5) Find the maximum and minimum value of $x^{3}+6 x^{2}+9 x+15$
6) (i) If \vec{a} and \vec{b} are perpendicular, then $\vec{a} \cdot \vec{b}=_{\ldots}$.
(ii) Find the projection of $\vec{a}=\hat{\imath}+\hat{\jmath}+3 \hat{k}$ on $\vec{b}=\hat{\imath}+\hat{\jmath}-\hat{k}$
7) (i) Write the condition for which two lines $\frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}}$ and $\frac{x-x_{2}}{a_{2}}=\frac{y-y_{2}}{b_{2}}=\frac{z-z_{2}}{c_{2}}$ are perpendicular.
(ii) Show that the lines $\frac{x-3}{2}=\frac{y-4}{3}=\frac{z-1}{3}$ and $\frac{x+2}{6}=\frac{y-2}{-5}=\frac{z+1}{1}$ are perpendicular.
8) If $P(A)=\frac{7}{13}, P(B)=\frac{9}{13}$ and $P(A \cap B)=\frac{4}{13}$ find
(i) $P(A \cup B)$
(ii) $P(A / B)$
(iii) $P(B / A)$

Answer any 6 questions from 9 to 16. Each carries 3 scores

9) Let $f:[-1,1] \rightarrow R$ be defined by $f(x)=\frac{x}{x+3}$. Show that f is one one and onto.
10) (i) Find the principal value of $\cos ^{-1}\left(\frac{1}{2}\right)$
(ii) Write $\tan ^{-1}\left(\frac{\cos x}{1-\sin x}\right), \quad \frac{-3 \pi}{2}<x<\frac{\pi}{2}$ in simplest form.
11)

(i). Construct a 2×2 matrix whose elements are given by $a_{i j}=\frac{i}{j}$
(ii). If $X+Y=\left[\begin{array}{ll}7 & 0 \\ 2 & 5\end{array}\right]$ and $X-Y=\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]$. Find X and Y
12) Find the area of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$
13) (i) Find the order and degree of the differential equation

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}-5\left(\frac{d y}{d x}\right)^{2}-6 y=\log x \tag{1}
\end{equation*}
$$

(ii) Solve the differential equation $\frac{d y}{d x}+\frac{y}{x}=x^{2}$
14) Find a unit vector perpendicular to each of the vector $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$

$$
\begin{equation*}
\text { where } \vec{a}=3 \hat{\imath}+2 \hat{\jmath}+2 \hat{k} \text { and } \vec{b}=\hat{\imath}+2 \hat{\jmath}-2 \hat{k} \tag{4}
\end{equation*}
$$

15) Find the shortest distance between the lines

$$
\begin{equation*}
\hat{r}=\widehat{2 l}+\hat{\jmath}+\lambda(2 \hat{\imath}-\hat{\jmath}+\hat{k}) \text { and } \hat{r}=2 \hat{\imath}-\hat{\jmath}-\hat{k}+\mu(3 \hat{\imath}+\hat{\jmath}-\hat{k}) \tag{4}
\end{equation*}
$$

16) A husband and a wife appear for an interview for the vacancies of the same post. If the probability of husband's selection is $\frac{1}{7}$ and that of wife's selection is $\frac{1}{5}$. If both tried to solve the problem independently, what is the probability that
(i). both of them selected
(ii). None of them selected
(iii). Exactly one of them selected. ${ }^{`}$

Answer any 3 questions from 17 to 20. Each carries 6 scores

17) Solve the following system of linear equation by Matrix method

$$
\begin{align*}
& 2 x+3 y+3 z=5 \\
& x-2 y+z=-4 \\
& 3 x-y-2 z=3 \tag{6}
\end{align*}
$$

18)

(i). Find the value of k if the function $f(x)=\left\{\begin{array}{c}k x^{2}, x \leq 3 \\ 4, x>3\end{array}\right.$ is continuous at $x=3$
(ii) Differentiate $x^{\sin x}, x>0$ w.r.t x
(iii) Find $\frac{d y}{d x}$ if , $x=a(\theta+\sin \theta), y=a(1-\cos \theta)$
19) Evaluate
(i). $\int \frac{x+3}{x^{2}-2-5 x} d x$
(ii) $\int_{0}^{\frac{\pi}{2}} \cos ^{2} x d x$
20) Maximise $Z=5 x+3 y$

Subject to $3 x+5 y \leq 15$

$$
\begin{gather*}
5 x+2 y \leq 10 \\
x, y \geq 0 \tag{6}
\end{gather*}
$$

Prepared by : Tirur Sub District, Malappuram

SL.NO	NAME	PEN	SCHOOL
1	ZAKEER HUSAIN	412012	GHSS PURATHUR
2	MAHESH T	913302	GGHSS BP ANGADI
3	VIJU T	911989	GHSS EZHUR
4	DARSANA M	691852	GHSS PERASANNUR
5	ANNEY VARKEY	233851	NMHSS THIRUNNAVAYA
6	JEWEL ELSA THOMAS	912358	GHSS ATHAVANAD
7	SAFIYA P T		MARKAZ HSS ATHAVANAD
8	HISHAM V		IRHSS POOKATTIRI

