SSLC Model Examination February-2023 MATHEMATICS

 English Version.
Detailed Solutions with Questions.

 Prepared by Dr.V. S. RaweendraWath.
Question: 1

Write the next two terms of the arithmetic sequence $5,12,19, \ldots \ldots .$. Solution:Given sequence $=5,12,19, \ldots$

$$
f=2, d=12-5=7
$$

\therefore the next two terms $=26$ and 33 . ..drvsr.

Question: 2.

Natural numbers from 1 to 10 are written on paper slips and put in a box. If one slip is taken from the box, without looking, then what is the probability of the number on the slip being a multiple of 3 ?

olution:-

Given 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.
Total number of slips $=10(\mathrm{~N})$
Mulyiple of three= 3,6,znd 9
ie., $n(f)=3$
Hebe the required probability

$$
=n(F) / n(N)=\frac{3}{10} .
$$

Question: 3.

ABCD is a rectangle. $\angle C A B=30^{\circ}, A C=10$ centimetres
(a) Find the length of $B C$
(b) Find the length of $A B$

Solution:-

In rt. $\Delta \mathrm{ABC}$
$30^{0}, 60^{\circ}, 90^{0}$ ie., $1: \sqrt{3}: 2$.

a) Lebgth of BC
$=\frac{10}{2}=5 \mathrm{~cm}$.
b) Length of $A B$
$=5 x \sqrt{3}=5 \sqrt{3} \mathrm{~cm}$.

.drvsr

Question: 4.

Find the median of first 9 even numbers.

Solution: -
Given the first nine even numbers
$=2,4,6,8,10,12,14,16,18,20$
The given data br odd numbers
\therefore Median $=\left(\frac{n+1}{2}\right)^{\text {th }}$ term .
$=\left(\frac{9+1}{2}\right)^{\text {th }}$ term $=\left(\frac{10}{2}\right)^{\text {th }}$ term
$5^{\text {th }}$ tern $=10$

Question: 5.

The sum of first 5 terms of an arithmetic sequence is 145 .
(a) Find the third term
(b) If the common difference of this sequence is 4 , write the terms.

Solution:-

Given $\mathrm{S}_{5}=145$.

a). Third term $\left(x_{3}\right)=\frac{145}{5}=29$.
b). . Given d = 4
\therefore The terns are $29,33,37,40, \ldots \ldots$. . ..drvdr

Question: 6.

Draw a circle of ofaius 5 centimetes. Draw atiangle of angles50, $60^{\circ}, 70^{\circ}$ and vertices on this circle.

Solution:-

Construction:

Draw a circle with radius $3 \mathrm{~cm} O$ as the center. Draw $O B$ and make an $\angle A O B=100^{\circ}$ (2 $\times 50=100$) make an $\angle B O C=$ $120^{\circ} .(2 \times 60=120)$ and join $A B, B C$ and $A C$.

Question: 7.

Draw the x and y axes and mark the points $A(3,0), B(4,1), C(2,-3)$.

Solution:-

.drvsr

Question: 8.

x		

picture is \% square
(a) Taking the side of the square as x centimetres, write an equation representing the given details.
(b) Find the length of one side of the square.

Solution:-

Given the width of tjd rectangle $=2 \mathrm{~m}$.
Area of the rectangle $=96$ sw.m. a) By given details

$$
\begin{aligned}
& \text { ie., } x(x+4)=96 \\
& \text { b) } x(x+4)=96 \Rightarrow x^{2}+4 x=96 \\
& (\text { square completion method }) \\
& x^{2}+4 x+4=96+4 \\
& (x+2)^{2}=100 .(\text { take roots }) \\
& \text { ie., } x+2=10 ; x=10-2=8 . \\
& \therefore \text { Lebgth of one side }=8 \mathrm{~m} .
\end{aligned}
$$

Question: 9.

In triangle $A B C, P(5,0), Q(6,1), R(3,1)$ are the mid-points of sides $B C, C A$ and $A B$ respectively.
(a) What is the most suitable name for the quadrilateral BPQR ?
(b) Find the coordinates of B and C .

Solution:-

a) By ibspection ,see that be a Parallelogram
b). $B=(3+5-6,1+0-1)=(2,0) 1$

$$
C=(10-2,0)=(8,0)
$$

...................................drvsr

Question 10.

0. Drawa circle of radius 3 centimetres. Marka point7 centimetres away from the centre. Draw tangents from this point to the circle.

Solution

Construction.

Draw a circle with a radius 3 cm 0 as its center. Draw $O P=7 \mathrm{~cm}$ line

and draw perpendicular to OP .Draw a circle $O Q$ as radius and cut it A and B. Join AP and BP becomes the

 tangents.Question 11.
A sequence is written by adding 3 to the multiples of 4 .
(a) Write the algebraic form of the sequence.
(b) Find the tenth term of the sequence.
(c) Is 100 a term of this sequence? Why?

Solution
Given sequence = 7, 11, $15 \ldots .$.
$\mathrm{f}=7, \mathrm{~d}=4$
a). . Algebraic form $=\mathbf{d n}+\mathbf{f}-\mathbf{d}$

$$
=4 b+7-4=4 n+3 .
$$

b) $\mathrm{x}_{10}=\mathrm{f}+9 ; 7+9 \times 4=7+36=43$.
c). No

The remainder got when divide 100 by 4 is not 3

OR

$100-43=57$ is not a multiple of $\mathbf{4 , 1 0 0}$ is

 not a term.
Question 12.

(a)

In the picture, $A B$ is a diameter of the semicircle. $P C$ is perpendicular to $A B$. $A P=5$ centimetres and $P B=3$ centimetres. Find the length of $P C$.
(b) Draw a square of area 15 square centimetres.

Solution

a) We know that, $\mathrm{PA} \times \mathrm{PB}=\mathrm{PC}^{2}$
$P C^{2}=5 \times 3=15$
$P C=\sqrt{ } 15$
b)

Question 13.

Perimeter of a rectangle is 80 centimetees. Its area i 1384 square centimetres. Find the lengthand breadth of the rectangle.

Solution

Giveb perimeter $=\mathbf{8 0} \mathrm{cm}$

Aera $=384 \mathrm{~cm}^{2}$

ie., $2(;+b)-80 . ; \mathbf{l}+\mathrm{b}=\frac{80}{2}=40$.

Let ' x ' be the length

 ie., Breadth $=40-\mathrm{x}$.Given Aera $=384 \mathrm{~cm}^{2}$
ie., $x(40-x)=384$
$40 x-x^{2}=384$
$x^{2}-40 x=-384$
(square completion method)
$x^{2}-40 x+400=-384+400=16$.
$(x+-20)^{2}=16$
Take root
ie., $x-20=\sqrt{ } 16= \pm 4$
$x-20=4 x=4+20=24$
$x-20=-4 x=-4+20=16$
Hebce length $=24 \mathrm{~cm}$ and Breadt $=16 \mathrm{~cm}$.

Question 14.

In class 10 A , there are 25 boys and 20 girls. In 10B, there are 26 boys and 24 girls. One student is to be selected from each class.
(a) What is the probability of both being girls?
(b) What is the probability of both being boys?
(c) What is the probability of one boy and one girl?

Solution

	Class 10A	Class 10B
Boys	25	26
Girls	20	24
Total	45	50

Total $\mathrm{m} \times \mathrm{n}=45 \times 50=2250$.
a). Probability both being girls

$$
\begin{aligned}
m \times n=20 \times 24 & =480 \\
n(F) / n(N) & =480 / 2250 \\
& =\frac{16}{75} .
\end{aligned}
$$

b) robability both being boys $\mathrm{mxn}=25 \times 26=650$

$\mathrm{n}(\mathrm{F}) / \mathrm{n}(\mathrm{N})=650 / 2250$

$$
=\frac{13}{45} .
$$

c) Probability of one boy and one girl $\frac{25 \times 54+20 \times 26}{45 \times 50}=\frac{112}{225}$.
...drvsr

Question .15.

$A B C D$ is a parallelogram. $B C=15$ centimetres ; $\angle B=45^{\circ}, A B=10 \sqrt{2}$ centimetres. $A M$ is perpendicular to BC .
(a) Find the length of $A M$ and $B M$.
(b) What is the length of MC?
(c) Calculate the length of diagonal AC.

Solution

Given, $B C=15 c,, \angle B=48^{\circ}$,
$B=10 \sqrt{2} \mathrm{~cm}$, AM perpendicular $B C$ a) . See the fig.,rt. $\triangle \mathrm{AMB}$, angles atr 4 $45^{0}, 45^{0}, 90^{0}$, ie., 1: 1: $\sqrt{2}$.
Hence $A M=10 \mathrm{cn}, B M=10 \mathrm{~cm}$.
b). $\mathbf{M C}=15-10=5 \mathrm{~cm}$.
c). In ths fig. Consider rt. Δ AMC,
By Pythagoras Theorem, AC $=\sqrt{ }(102+52)=\sqrt{ }(100+25)=\sqrt{ } 125$ $=5 \sqrt{ } 5 \mathrm{~cm}$.
Question 16.

Consider the polynomial $\mathrm{P}(x)=x^{2}-11 x+21$
(a) Find $\mathrm{P}(2)$
(b) Find $\mathrm{P}(x)-\mathrm{P}(2)$
(c) Write $\mathrm{P}(x)-\mathrm{P}(2)$ as the product of two first degree polynomials.

Solution

Given, $P(x)=x^{2}-11 x+21$.
a). $P(2)=2^{2}-11 x 2+21$

$$
=4-22+21
$$

$$
=3
$$

b) $P(x)-P(2)=x^{2}-11 x+21-3$

$$
=x^{2}-11 x+18
$$

c) $x^{2}-11 x+18=(x-2)(x-9)$. drvsr

Question 17.

Sides of rectangle $A B C D$ are parallel to the axes. The coordinates of A and C are $(3,1)$ and $(7,4)$ respectively.
(a) Find the coordinates of B and D.
(b) Find the length of diagonal of the rectangle.

Solution

a). $\mathbf{B}(7,1) \mathbf{D}(3,4)$
b). $\mathbf{A C}=\sqrt{ }(7-3)^{2}+(1-4)^{2}$ $=\sqrt{ }(16+9)=\sqrt{ } 25=5$ units.
drvsr
Question 18.

$A(1,3), B(2,5), C(3,7)$ and D are points on a line such that $A B=B C=C D$.
(a) Find the coordinates of D.
(b) Find the slope of the line.
(c) Find the equation of this line.

Solution
a). $D=(4,9)$
b). Slop

$$
\begin{array}{l|l}
=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & \text { c) }(1,3)(x, y) \\
=\frac{5-3}{2-1} & \frac{y-3}{x-1}=\frac{2}{1} \\
=\frac{2}{1} & 2(x-1)=1(y-3) \\
=2 & 2 x-2=y-3 \\
2 x-y+1=0
\end{array}
$$

Question 19.

In the figure, O is the centre of the circle. $A B$ is a chord of the circle and $B T$ is a ta $\angle A B T=70^{\circ}$. Find the measures of the angles given below.
(a) $\angle O B T$
(b) $\angle O B A$
(c) $\angle \mathrm{AOB}$
(d) $\angle \mathrm{APB}$

Solution
a) $\angle O B T=90^{\circ}$
[Angle b / w radius abd tabgent]
b). $\angle O B A=20^{\circ}[90-70=20]$.
c). $\angle A O B=180-(20+20)$

$$
=180-40=140^{\circ} .
$$

d). $\angle \mathrm{APB}=\frac{140}{2}=70^{\circ}$.
...drvsr Question 20.

A square pyramid is made using a cardboard piece in the shape as shown in the figure. The side of the square is 10 centimetres. Equal sides of the triangles are 13 centimetres.
(a) Find the slant height of the square pyramid.
(b) Calculate the surface area of the square pyramid

Solution

Giveb, side of the square $=10 \mathrm{~cm}$. Side of the triangle (e) $=13 \mathrm{~cm}$.
a) Slabt height
$I^{2}=13^{2}-5^{2}$
= $169-25$ = 144
$I=\sqrt{ } 144=12$.
Slabt height $=12 \mathrm{~cm}$.
T.S.A $=a^{2}+2 \mathrm{al}$
$=10^{2}+2 \times 10 \times 12$
$=10+240=340 \mathrm{~cm}^{2}$.

Question 21.

Two sectors are cut out from a circle. The central angle of the larger sector is double that of the smaller. Each sector is rolled up to make cone.

a) The slant height of the cone made from the smaller sector is 10 centimetres. What is the slant height of the other cone?
b) Write the ratio of the radii of the two cones. $\frac{r r^{2}}{} \times \frac{x}{a^{2}}-\frac{1}{2}$
:) Find the ratio of the base areas of the cones.
l) Find the ratio of their curved surface areas.

Solution
a) Hear we know that the slsnt height of the cone = the radiud of the sector or circle.

\therefore Slant height $=10 \mathrm{~cm}$.

b) ratio of radii $=1: 2$.
c) Ratio of area $=1: 4$.
d) Ratio of TSA = $1: 2$.

The sum of the $8^{\text {th }}$ and $19^{\text {th }}$ terms of an arithmetic sequence is 125 .
(a) What is the sum of the $7^{7 \text { th }}$ and $20^{\text {th }}$ terms ?
(b) If the $6^{\text {th }}$ term is 40 , then find the $21^{\text {st }}$ term.
(c) Find the sum of first 26 terms:

Solution

Given, sum of $8^{\text {th }}$ and $19^{\text {th }}$ tern of an arithmetic sequence $=235$.
a). ie., $\mathrm{x}_{8}+\mathrm{x}_{19}=\mathbf{1 2 5}$
$\therefore \mathrm{x}_{7}+\mathrm{X}_{20}=125$
b). $x_{6}+x_{21}=125$.

$$
\begin{aligned}
& \mathbf{x}_{21}=125-40=85 \\
& \text { c) } \begin{aligned}
S_{26} & =\frac{26}{2}\left(x_{1}+x_{26}\right) \\
& =13 \times 125 \\
& =1625
\end{aligned}
\end{aligned}
$$

Question 23.

In quadrilateral $\mathrm{ABCD}, \angle \mathrm{A}=95^{\circ}, \angle \mathrm{B}=100^{\circ}, \angle \mathrm{C}=90^{\circ}$
(a) Find the measure of $\angle \mathrm{D}$.
(b) If we draw a circle with BD as diameter, then check whether the vertices A and C are outside, on or inside the circle.
(c) If a circle is drawn through the points A, B and C, where would be the point D with respect to that circle?

Solution

a) $. \angle D=360-(100+90+95)$
$=75^{\circ}$.
b) A is inside the circle1- [$\angle \mathrm{C}=90$] C is on the circle [$\angle A>90$] c) Out side the circle. [$\angle \mathrm{D}<90$] .drvsr

Question 24.

A boy standing at the edge of a canal sees the top of a tree at the other edge at an elevation of 60°. Stepping 10 metres back, he sees the tree at an elevation of 30°. The boy is 1.5 metres tall.
(a) Draw a rough figure.
(b) Calculate the width of the canal and the height of the tree.

Solution

Rt. $\triangle \mathrm{ABC}$, angles are $30^{\circ}, 60^{\circ}, 90^{\circ}$.
ie., $1: \sqrt{3}: 2$
5: $5 \sqrt{3}: 10$
Width of the canal $=5 \mathrm{~m}$ Height of the tree $=1.5+5 \sqrt{3} \mathrm{~m}$.

Question 25.

Draw a triangle $A B C$ in which $A B=7$ centimetres, $B C=6$ centimetres, $A C=5$ centimetres. Draw its incircle. Measure and write the radius of the incircle.

Solution

Radius $=1.6 \mathrm{~cm}$.

drvsr

Question 26.

(a) A solid metallic sphere of radius 6 centimetres is cut into two equal halves. What is the surface area of each hemisphere?
(b) One of these hemispheres is melted and recast to make a cone of the same radius. Find the height of the cone.
Solution
Given radius $=6 \mathrm{~cm}$.
a). $\mathrm{TSA}=3 \pi r^{2}=3 \pi \times 6=108 \pi \mathrm{sq} . \mathrm{Cm}$
b). Volume of the hemisphere $=\frac{2}{3} \pi r^{3}$.

$$
=\frac{2}{3} \times \pi \times 6^{3}=216 \pi .
$$

Volume of a cone $=\frac{1}{3} \pi r^{2} \boldsymbol{h}$.
Height of the cone $=216 \pi . / \frac{1}{3} \pi r^{2}$.

$$
=12 \mathrm{~cm} .
$$

SLC Model Examination February-2023 = -27-

Question 27.

. Consider the circle with centre at the origin and radius 10 units.
(a) Find the coordinates of the points where this circle cuts the x and y axes.
(b) Check whether $\mathrm{P}(6,8)$ is a point on this circle.
(c) Write the equation of this circle.

Solution
a) $(10,0),(-10,0),(0,10),(0,-10)$
b) Radius $+\sqrt{ }(8-0)^{2}+(6-0)^{2}=\sqrt{ } 64+36$

$$
=\sqrt{ } 100=10
$$

Yes giveb point on the circle.
c) . Equation of the circle $X^{2}+y^{2}=r^{2}$

$$
\begin{aligned}
& x^{2}+y^{2}=10^{2}=100 \\
& x^{2}+y^{2}=100
\end{aligned}
$$

Question 28.

The table below shows the students of a maths club sorted according to their heights.

Height (Centimetre)	Number of Students
$120-130$	2
$130-140$	7
$140-150$	10
$150-160$	5
$160-170$	1
Total	25

(a) When the heights are written in ascending order, height of which student is taken as the median height ?
(b) Find the median height.

Solution

Height	Frwqurbc es	< height	cf
$1420-130$	2	130	2
$130-140$	7	<140	9
$140-150$	10	<150	19
$150-160$	5	<160	24
$160-170$	1	<170	25
Totzl	25		

$B=25$
Nedian $=\left(\frac{n+1}{2}\right)^{\text {th }}$ student $=\left(\frac{25+1}{2}\right)$ th 13 th student.
b) $\mathbf{d}=\frac{150-140}{10}=\frac{3 .}{10}=1$.

Here $\mathrm{x}_{10}=140+\frac{d}{2}=140+\frac{1}{2}$ $=140.50$.

$$
\begin{aligned}
x_{13} & =x_{10}+3 d \\
& =140.5+3 \times 1=140.5+3 \\
& =143.50
\end{aligned}
$$

Question 29.

Let's find natural numbers which can be written as the sum of consecutive natural numbers.

$$
\begin{aligned}
& { }^{\circ} 3=1+2 \\
& { }^{\circ}=2+3 \\
& 6_{6}=1+2+3 \\
& 0_{7}=3+4 \\
& { }^{\circ}=4+5 \\
& \dot{e} 10=1+2+3+4 \\
& 011=5+6 \\
& e_{12}=3+4+5
\end{aligned}
$$

- All odd numbers other than 1 , can be written as the sum of two consecutive natural numbers.
- Even numbers, which are powers of $2(2,4,8,16$.....) cannot be written as the sum of consecutive natural numbers.
- The even numbers which are not powers of 2 can be written as the sum of three or more consecutive natural numbers.
(a) Write 13 as the sum of consecutive natural numbers
(b) Write 14 as the sum of consecutive natural numbers.
(c) Write 101 as the sum of consecutive natural numbers.
(d) Find the numbers between 20 and 100 that cannot be written as the sum of consecutive natural numbers.

Solution

a) $\mathbf{1 3}=\mathbf{6 + 7}$
bb) $14=2+3+4+5$
c) $101=50+51$
d) $2^{5}=32,2^{6}=64$.
..drfsr

SSLC Model Examination February-2023 MATHEMATICS English Version.

Detailed Solutions with Questions. Prepared by Dr.V.S. Rawcendranath.

