SECOND YEAR HIGHER SECONDARY EXAMINATION MARCH 2023 – ANSWER KEY

UNOFFICIAL

SUBJECT: CHEMISTRY

Qn. Code: **SY 525**

Qn. No.	Sub Qns	Answer Key/V	'alue Points	Scor e	Total
Answer any 4 questions from 1 to 5. Each carry 1 score					
1.		mol L ⁻¹ s ⁻¹ (mol/L/s)		1	1
2.		(a) Ag		1	1
3.		Ethane-1,2-diamine OR, Ethylene dia	mine (H ₂ N-CH ₂ -CH ₂ -NH ₂ OR, en)/Oxalate	1	1
1		Einkelstein Reaction	srequireuj	1	1
				1	-
5.		Benzaldehvde OR.		1	1
		Answer any 8 questions f	from 6 to 15. Each carry 2 scores		1
6.		Henry's law states that at constant temperal directly proportional to the pressure of the g Or, The partial pressure of the gas in vapour fraction of the gas (x) in the solution. OR, the mathematical expression, $p = K_{H}.x$ (v	ture, the solubility of a gas in a liquid is gas. phase (p) is proportional to the mole where p is the partial pressure of the gas,	1	2
		x is the mole fraction of the gas in the solution Applications: (i) In the preparation of soda we condition known as Bends in Scuba divers (ii people living at high altitudes or climbers.	on and K _H is the Henry's law constant). vater and soft drinks. (ii) A medical) A medical condition known as Anoxia in <u>[Any one application is required]</u>	1	
7.		Ideal solutions are solutions which obey Raoult's law at all concentrations. E.g.: solutions of n-hexane and n-heptane, bromoethane and chloroethane, benzene and toluene etc.		1 1	2
8.		Given λ^{0} m (NaCl) = 126.4 Scm ² mol ⁻¹ , λ^{0} m (HCl) = 425.9 Scm ² mol ⁻¹ and λ^{0} m (NaAc) = 91.0 Scm ² mol ⁻¹ From Kohlrausch's law, λ^{0} m(HAc) = λ^{0} m(NaAc) + λ^{0} m(HCl) – λ^{0} m(NaCl) = 91.0 + 425.9 – 126.4 = 390.5 Scm²mol⁻¹		1	2
9.	(i) (ii)	These are reactions which appear to follow higher order but actually follow first order kinetics.		1	2
10	(i)	Because of the comparable energies of s and d electrons		1	
10.	(i) (ii)	Manganese (Mn)			2
11.	(i)	Tetraammineaquabromidocobalt (III) bromide		1	2
	(ii)	Potassium trioxalatoaluminate (III)		1	2
12.		S _N 1 Reaction	S _N 2 Reaction		
		Occurs in two steps	Occurs in one step		2
		Order and molecularity = 1	Order and molecularity = 2	2 x 1	

		Intermediate carbocation is formed	No intermediate is formed.		
		For optically active compounds, the	For optically active compounds, the		
		reaction proceeds through racemization.	reaction proceeds through inversion		
			of configuration.		
		The order of reactivity of alkyl halide is	The order of reactivity of alkyl halide		
		$3^{0} > 2^{0} > 1^{0}$	is $1^0 > 2^0 > 3^0$		
			[Any 2 differences are required]		
13.		Phenol is manufactured by Cumene process	. When cumene is oxidised in presence of		
		air followed by acid hydrolysis, we get phen	ol.	1	
		CH ₃ CH ₃			
		$\begin{array}{c} CH_3-CH \\ I \\ \end{array} \begin{array}{c} CH_3-C-O-O-H \\ I \\ \end{array} \begin{array}{c} OH \\ I \\ \end{array}$			2
		O_2 H^+ H^- + CH _o COCH _o		1	
				1	
		Cumene Cumene hydroperoxide			
14.		Aniline (a Lewis base) forms a salt with anhydrous aluminium chloride (a Lewis acid),			
		which is used as catalyst in Friedel-Crafts reaction. So the catalyst is not available for		2	2
		the reaction and hence it does not undergo Friedel-Crafts reaction.			
15.		Oligosaccharides are carbohydrates which give two to ten monosaccharide units on		2	2
		hydrolysis. E.g. Sucrose, maltose, lactose, raffinose etc. [Any one example required]		2	2
		Answer any 8 questions fr	<mark>om 16 to 26. Each carries 3 scores</mark>	•	r
16.	(i)	Molar conductivity is the conductivity of 1 n	nole of an electrolytic solution kept		
		between two electrodes of a conductivity cell with unit area of cross section and at a			
		distance of unit length.			
		OR, Molar conductivity of a solution at a given concentration is the conductance of			
		'V' volume of a solution containing one mole of electrolyte kept between two			
		electrodes with area of cross section A and distance of unit length.			
		OR, Molar conductivity, $\Lambda_m = K.V$			
		OR, $\Lambda_m = K/C$ (where K is the conductivity and solution in mol/m ³)	d c is the concentration of the electrolytic		
		solution in mol/m ³). $-$ 1000 (
	(;;)	OR, Molar conductivity, $\Lambda_m = \frac{1000 \text{ k}}{M}$ [Where M is the molarity of the solution].			3
	(11)	101			5
		λ ⁰ m			
		Strong electrolyte		2	
		λm			
		Weak electrolyte			
		√			
17.	(i)	Here k = 6.8 x 10 ⁻¹⁴ s ⁻¹			
	(')	$t\frac{1}{2} = 0.693 = 0.693 = 1.019 \times 10^{13} \text{ s}$		1	
		k 6.8 x 10 ⁻¹⁴			3
	<i>(</i> ···)				
	(11)	integrated rate equation for a first order rea	action is:		

		k= 2 303 log [B]	1	
		$\frac{1}{t} = \frac{1}{[R]}$	-	
		Where $k - rate$ constant, t- time taken, $[R]_0 - Initial$ concentration of the reactant and $[R]$ is the concentration of the reactant at time 't'.	1	
18.		When temperature increases, the fraction of molecules (number of molecules) with		
		energy equal to or greater than activation energy increases. So, the rate of reaction	1½	2
		A catalyst increases the rate of a reaction by providing a new path for the reaction with low activation energy.	1 ½	5
19.		Potassium dichromate is generally prepared from chromite ore (FeCr ₂ O ₄) by the		
		following three steps.	1	
		carbonate in presence of air.	Т	
		4 FeCr ₂ O ₄ + 8 Na ₂ CO ₃ + 7 O ₂ → 8 Na ₂ CrO ₄ + 2 Fe ₂ O ₃ + 8 CO ₂		2
		2. Sodium chromate is acidified with sulphuric acid to form sodium dichromate.	1	5
		$2Na_2CrO_4 + 2 H^+ \rightarrow Na_2Cr_2O_7 + 2 Na^+ + H_2O$	1	
		3. Conversion of sodium dichromate to potassium dichromate by treating with notassium chloride	T	
		Na ₂ Cr ₂ O ₇ + 2 KCl \rightarrow K ₂ Cr ₂ O ₇ + 2 NaCl		
20.	(i)	It is a series in which the ligands are arranged in the increasing order of their field	1	
		strength.		
		$H_3 < en < CN^- < CO$.		
		\uparrow		
	(ii)	$d_{x^2-y^2} d_{z^2}$ e_g		
		$ = \frac{375\Delta_{\circ}}{\Delta_{\circ}} \Delta_{\circ} $	2	3
				-
		Metal $d_{xy} d_{xz} d_{yz} = t_{2g}$ d orbitals		
		$d_{x^2-y^2} d_{z^2} = d_{xy} d_{yz}$ Average energy Splitting of d orbitals		
		Free metal ion spherical crystal field crystal field		
21	(:)			
21.	(1)	Br Br		
		2,4,6-Tribromophenol OR,	1	
			1	
	(ii)	Benzene (C ₆ H ₆) OR,	_	
		O ₂ N OH NO ₂		3
	(jiji)	2,4,6-Trinitrophenol OR, Picric acid OR, NO ₂	1	
L	11		-	1

22.	(i)	Kolbe's Reaction: When phenol is treated with sodium hydroxide, we get sodium		
		phenoxide, which on treating with CO ₂ followed by acidification, we get salicylic acid.	1½	
		OR,		
		OH ONa OH		
		NaOH (i) CO ₂ COOH		
		2-Hydroxybenzoic acid (Salicylic acid)		3
	(ii)	Reimer-Tiemann Reaction: When phenol is treated with chloroform in the presence	1%	5
	(")	of sodium hydroxide, followed by acidification, we get salicylaldehyde.	1/2	
		OR,		
		OH OH		
		(i) Aq. NaOH		
		Phenol (III) H Salicylaldehyde		
23.	(i)	Aldehydes add HCN to form cyanohydrin. OR, the Chemical equation		
		Aldehydes add alcohol to form hemi-acetal or acetal. OR, the Chemical equation	2	
		Aldehydes add sodium bisulphite to form bisulphite addition product. OR, the		
		Chemical equation		3
		Aldehydes add ammonia or ammonia derivatives to give imines or substituted		
		imines. OR, the Chemical equation [Any 2 reactions required]		
	(ii)	Ethanol OR, Ethyl alcohol (C_2H_5 -OH OR, CH ₃ -CH ₂ -OH)	1	
24.	(i)	Aldehydes.	1	
	(ii)	Tests to distinguish aldehydes from ketones:	1	
		1. Tollens' Test: When an aldehyde is heated with Tollens' reagent, we get a	1	
		bright silver mirror.		3
		2. Fehling's lest: When an aldehyde is heated with equal volume of Fehling's	1	
		tartarata) we get a red precipitate of cuprous oxide (CupO)		
		These reactions are not answered by ketones.		
25.	(i)			
		Primary amines on neating with chloroform and alconolic potassium hydroxide form	1	
		foul smelling isocyanides or carbyl amines. This reaction is known as carbyl amine		
		reaction.		
		OR, $R-NH_2 + CHCI_3 + 3 \text{ KOH } heat R-NC + 3 \text{ KCI} + 3 H_2O$		
	(::)	OR, any other example.		
	(11)	In Annine (C_6H_5 -INH ₂), the ione pair of electrons is in conjugation with the benzene	2	3
		$\rightarrow NH_{2}$ $\rightarrow NH_{2}$ $\rightarrow NH_{3}$ $\rightarrow NH_{4}$ $\rightarrow NH_{4}$		
		$ \bigcup \leftrightarrow \bigcup \leftarrow \leftrightarrow \bigcup \leftrightarrow \bigcup \leftrightarrow \bigcup$		

26.	(i)	The amino acids which can be synthesised in the body are known as <i>non-essential</i>	1/2	
		amino acids.		
		OR, E.g.: Glycine, Alanine, Glutamic acid, Aspartic acid, Glutamine, Asparagine, Serine,		
		Cysteine, Tyrosine and Proline.		
		The amino acids which cannot be synthesised in the body and must be obtained	1/2	
		through diet, are known as essential amino acias .		
		Deputation Tryptophan and Histiding		
	(ii)	Amino acids contain both acidic (carboxyl group) and basic (amino group) groups. In		
	(11)	aqueous solution, they form internal salts known as zwitter ions. These ions are		3
		neutral, but contains both positive and negative charges and hence show amphoteric	2	
		behaviour.		
		OR,		
		0 0		
		$P - CH - C - O - H \longrightarrow P - CH - C - O^{-1}$		
		:NH ₂ NH ₃		
27	(*)	Answer any 4 questions from 27 to 31. Each carry 4 scores		
27.	(1)	I nese are properties of dilute solutions, which depend only on the number of solute	1	
		particles and not on their nature.		
	(ii)	The important colligative properties:		
		(i) Relative lowering of vapour pressure (ii) Elevation of boiling point (iii) Depression	1	4
	<i></i>	of freezing point (iv) Osmotic pressure. [Any 2 Required]	-	-
	(111)	The pressure higher than the osmotic pressure is applied to the solution side, the	1	
		direction of osmosis gets reversed. This phenomenon is called reverse osmosis.		
		Application of reverse osmosis is desalination of sea water.	1	
28.	(i)	Anode: Lead (Pb)	1/2	
		Cathode: A grid of lead packed with PbO ₂	1/2	
	(ii)	Anode reaction: Pb + SO ₄ ²⁻ \rightarrow PbSO ₄ + 2e ⁻	1	4
		Cathode reaction: $PbO_2 + SO_4^{2^+} + 4H^+ + 2e^- \rightarrow PbSO_4 + 2H_2O$.	1	-
	(iii)	The cell can be recharged by applying an external potential higher than the potential		
20		of the cell.	1	
29.	(i)	Cl = + Cl = +		
		$H_{3N} $ Cl $H_{3N} $ NH		
		Co		
		$H_{3}N$ NH_{3} $H_{3}N$ NH_{3}	2	
		NH, Cl		4
		, CI		
		cis isomer $[Co(NH_3)_4Cl_2]$ trans $[Co(NH_3)_4Cl_3]$		
	(ii)	In $[Ni(CN)_4]^2$, the central atom Ni is in dsp ² hybridisation. So it has a square planar	2	
		geometry. Due to the absence of unpaired electrons, the complex is diamagnetic.	2	
30.	(i)	Major product is But–2–ene ($CH_3 - CH = CH - CH_3$) and	1	
		minor product is But-1-ene ($CH_3 - CH_2 - CH = CH_2$).	1	4

	(ii)	The rule is Saytzeff's rule or Zaitsev's rule.		
		It states that in dehydrohalogenation reactions, the major product is that alkene		
		which contains maximum number of alkyl groups around C = C bond.	1	
31.	(i)	Haloform Reaction: Compounds having CH_3 – CO – group or CH_3 – $CHOH$ – group, when		
		treated with sodium hypohalite (or, halogen and alkali), we get a haloform (CHX_3).	2	
		$R-CO-CH_3$ <u>NaOX</u> $R-COONa + CHX_3$ (where X = Cl, Br or I)		
		OR, Any other example.		
	(ii)	Gatterman – Koch Reaction: Benzene when treated with CO and HCl in the presence		
		of anhydrous aluminium chloride or cuprous chloride, we get benzaldehyde.	1	
		OR,		4
		CHO		
		$\begin{array}{ c c c c c }\hline \hline $		
		Benzene Benzaldehyde		
	(iii)	Clemmensen Reduction	1	