

PLUS ONE ZOOLOGY

IDEAL EHSS, KADAKASSERRY

FIRST YEAR HIGHER SECONDARY EXAMINATION- 2023

ZOOLOGY

Q.No		SCORING KEY	SCOR
	I. A	nswer any 3 questions from 1-5. Each carries 1 score	1
1	carbonic anhydrase		
2	Pericardium		1
3	a) Panthera leo		1
4	Renal calculi / Kidney	stone	1
5	Synaptic Cleft		1
	II Ar	nswer any 9 questions from 6-16. Each carries 2 score.	
6	a) SAN- Sino Atrial N	ode	1
	b) It produce action potential without any external stimuli and helps in the conduction of nerve		
	impulse and made	the heart functions.	
7	Α	B	
	• ADH	Water reabsorption	0.5
	Angiotensin II	Powerful Vaso Constrictor	0.5
	• ANF	Cause dilation of blood vessels	0.5
	Aldosterone	Reabsorption of Na ⁺	0.5
8	A signal sent out by CNS		
	Release of a Neurotransmitter		
	• Release of Ca ⁺⁺ into sarcoplasm		
	• Binding of Ca ⁺⁺ with troponin		
	• Remove the masking of active sites for myosin		
9	Poikilothermous Animals		
	• Rana		
	• Calotes		
	• Scoliodon		0.5
	• Hippocampus		0.5
10			
	$\begin{array}{ccc} H-C-NH_2 & H-C-NH_2 \\ I & I \\ \hline H & CH_2-OH \end{array}$		
	a) Glycine b) Serine		
11	a) Ball & socket joint, Hinge Joint, Pivot Joint, Gliding Joint, Saddle joint		
	b) • Ball and socket joint (between humerus and pectoral girdle),		
	• hinge joint (knee joint),		

				PLUS ONE ZOOLOGY			
hilpa.	K.Jayan, HSST Zoology		IDEAL EHSS, KADA		KASSERI		
	• pivot joint (between atlas	· · · · ·					
	• Gliding joint (between the	e carpals)					
	• saddle joint (between carpal and metacarpal of thumb (any two joints and its location						
				(Write any 2)			
12	a) A- Apoenzyme B – Prosth	etic group			0.5+0		
	b) If an enzyme loss it co-factor, It loss its catalytic activity.						
13	a) Electrocardiograph / Electrocardiogram						
	b) P - Depolarisation of a	trium			0.5		
	QRS - Depolarisation of v				0.5		
14	a) Ctenophora				0.5		
14					0.5		
	b) Cnidaria/Coelenterata						
	c) Echinodermata				0.5		
	d) Hemichordata				0.5		
15	a) Percentage saturation of haemoglobin with oxygen (Oxygen dissociation curve)						
	b) Factors favorable for the	formation of l	naemoglobin				
	• Higher pH/Low H ⁺ concentration						
	• Lower temperature			0.5			
	• Lower pCO2				0.5		
	• Higher pO2			(Any 3 factors)			
16							
10	Ostechtyes	Chondricthy	-05				
	a) Bony endoskeleton	Cartilaginous			1		
		endoskeleton			1		
	b) Terminal mouth	Ventral mout			1		
	c) Air bladder present d) Cycloid/Ctenoid scales	Air bladder al Placoid scales					
	e) Oviparous	Mostly Vivip					
	f) Claspers absent	Claspers pres					
	g) Non -predacious	Predacious					
	(Any 2 features)			· · · ·			
	1	any 3 questio	ons from 17-20.	Each carries 3 score	1		
17	a)						
	Nucleoside		Nucleotide				
	b)		Sugar+ Nitrogen	base+ Phospate	1		
	Primary Metabolites		Secondary Meta	abolitos			
		franceline	-				
	They have identifiable		-	rectly involved in normal growth,			
	physiological processes a	•	-	reproduction. They are found in	1		
	for life. E.g. amino a	cids, sugars,		l microbial cells. E.g.			
	nucleic acids, lipids, vitan	aina ata	Alkaloids,toxins		1		

PLUS ONE ZOOLOGY

Shilpa. K.Jayan, HSST Zoology

IDEAL

IDEAL EHSS, KADAKASSERRY

	c)						
	Lyase:	Ligase					
	Enzymes that catalyse removal of groups	Enzymes catalysing the linking together of 2					
	from substrates by mechanisms other than	compounds, e.g., enzymes which catalyse	1				
	hydrolysis leaving double bonds	joining of C-O, C-S, C-N, P-O etc. bonds.					
18	a) coelomates : Animals possessing coelom are called coelomates, e.g., Annelida to chordata						
	b) Acoelmate : Animals without coelom Eg: Porifera, cnidaria, ctenophore, Platyhelminthes						
	c) Pseudocoelomates: In some animals, the body cavity is not lined by mesoderm, instead, the						
	mesoderm is present as scattered pouches in between the ectoderm and endoderm.						
	Such a body cavity is called pseudocoelom and the animals possessing them are						
	called pseudocoelomates, e.g., Phylum aschelminthes						
	(Write any 2 with example)						
19	a) Mid brain		0.5				
	b) Cerebrum		0.5				
	c) Cerebellum		0.5				
	d) Dura mater		0.5				
	e) Arachnoid mater		0.5				
	f) Pia mater		0.5				
20	a) α cell and β cell		1				
	b) α cell – Produce glucagon		1				
	β cell – Produce Insulin						
	c) Pancreas		1				