CIRCLES

QUESTION - 1

In the figure $A B$ is the diameter of the semicircle and C is a point on it . D is a point on the line $B C$ extended . $\angle B A C=50^{\circ}$. Also $A B=A D$.
a) What is the measure of $\angle A C B$?
b) Find the measures of the angles of the triangle ABD

QUESTION - 2

In the figure $A B$ is the diameter of the semicircle and P, Q are two points on it . Both lines AP and BQ extended meet at the point C. The lines $A Q$ and $B P$ intersect at R.
a) What are the measures of the angles $\angle \mathrm{APB}$ and $\angle \mathrm{AQC}$?
b) If $\angle P R Q=x^{0}$, what is the measure of $\angle A R B$?

c) Prove that $\angle A C B+\angle A R B=180^{\circ}$.

QUESTION - 3

In the figure , in quadrilateral $\mathrm{ABCD}, \angle \mathrm{A}=100^{\circ}$, $\angle \mathrm{B}=110^{\circ}, \angle \mathrm{C}=60^{\circ}$.
a) What is the measure of $\angle \mathrm{D}$?
b) Check whether the vertex D is inside, on or outside the circle with AC as diameter.

c) Check whether the vertices A and C are inside, on or outside the circle with $B D$ as diameter.

QUESTION - 4

In the figure B is a point on the line $A C . P$ is a point on the semicircle with $A B$ as diameter.
Q is a point on the semicircle with $B C$ as diameter . Both the lines AP and CQ are
 extended to meet at \mathbf{R}.
a) Complete the following table .

Angle	Measure
\angle APB	
\angle BQR	
\angle ABP	
\angle PBQ	

b) Prove that the quadrilateral PBQR is a rectangle .

QUESTION - 5

In the figure R is a point on the line $P Q . S$ is a point on the semicircle with PR as diameter.T is a point on the semicircle with RQ as diameter .

The lines $P Q$ and $S T$ meet at R.Also $S P=S R$.

a) Complete the following table .

Angle	Measure
\angle PSR	
\angle QTR	
\angle SPR	
\angle RQT	

b) Prove that QTR is an isosceles triangle .

QUESTION - 6

In the figure, \mathbf{D} is a point on the semicircle with centre \mathbf{O} and diameter $\mathrm{AB} . \mathrm{OB}$ is the diameter of the smaller semicircle . The line DO is extended to meet the smaller semicircle at C. A line drawn parallel to CD through B meets the larger semicircle at $\mathrm{E} . \angle \mathrm{OBC}=50^{\circ}$.

a) Complete the following table .

Angle	Measure
\angle OCB	
\angle AOD	
\angle ADO	
\angle OBD	

b) Prove that BD is the bisector of $\angle \mathrm{ABE}$.
c) Check whether the vertex B is inside, on or outside the circle with CE as diameter.

QUESTION - 7

In the figure O is the centre of the circle and A is a point on it B is a point on the semicircle with $O A$ as diameter . $A B$ is extended to meet the circle at C and $B O$ is extended to meet the circle at $D . O B=3$ centimetres , $A B=4$ centimetres .
a) What is the measure of $\angle \mathrm{OBA}$?
b) What is the length of AC ?
c) What is the radius of the circle ?
d) Calculate the area of the triangle DAC .

QUESTION - 8

In the figure \mathbf{O} is the centre of the larger semicircle . OA is the diameter of the smaller semicircle and D is a point on it . AD is extended to meet the larger semicircle at C. Radius of the larger semicircle is
 10 centimetres and $B C=12$ centimetres .
a) What are the measures of $\angle \mathrm{ACB}$ and $\angle \mathrm{ADO}$?
b) What are the lengths of the lines AC and DC ?
c) Calculate the perimeter of the triangle AOD .

QUESTION - 9

In the figure, two circles centred at O and B meet at D and E.
a) What are the measures of $\angle \mathrm{ADB}, \angle \mathrm{AEB}$?
b) Prove OBD is an equilateral triangle .
c) Find the measures of the angles of the triangle ACD

d) Prove that AB is the bisector of $\angle \mathrm{DAE}$.

QUESTION - 10
In the figure, D is a point on the semicircle with diameter $A B$. The circle drawn with diameter $A D$ cuts $A B$ at C
a) What are the measures of $\angle \mathrm{ADB}$ and $\angle \mathrm{ACD}$?
b) Does the circle with diameter BD pass through C? Why ?

c) If $\angle A D C=x^{0}$, what is the measure of $\angle \mathrm{CBD}$?
d) Check whether the angles of the triangles $A C D$ and $B C D$ are equal or not .
e) Prove that $A C \times C B=C D^{2}$.

QUESTION - 11

In the figure A, B, C, D are the points on the circle . The line AD is extended to \mathbf{E}.
$\angle \mathrm{BDE}=50^{\circ} \quad, \mathrm{AD}=\mathrm{BD}$.
Find the measures of the following angles .
a) $\angle \mathrm{ADB}$
b) $\angle A C B$

c) Angle made by the small arc $\mathbf{A B}$ at the centre of the circle .
d) $\angle \mathrm{OAB}$
e) $\angle \mathrm{OBD}$

QUESTION - 12

In the figure A, B, C, D are the point on the circle with centre $O . O A=A B=A D$ The lines AC and BD meet at \mathbf{P}.
a) Prove that OAB is an equilateral triangle .
b) Find the mesures of the following angles .

$$
\angle \mathrm{AOB}, \angle \mathrm{ACB}, \angle \mathrm{ADB}
$$

c) Prove that BD is the bisector of $\angle \mathrm{OBA}$.

d) Check whether the point P is inside, on or outside the circle with $A D$ as diameter. Give reason .

QUESTION - 13

In the figure A, B, C, D are the points on a circle with centre O. CD = AD. Another circle is drawn with \mathbf{B} as centre passes through O and E is a point on it .

This circle cuts the lines BC and BA at P and Q respectively. $\angle \mathrm{PEQ}=3 \mathbf{0}^{\circ}$.
a) Find the measures of the following angles .
$\angle \mathrm{PBQ}, \angle \mathrm{AOC}, \angle \mathrm{ADC}, \angle \mathrm{OAD}$
b) Prove that the quadrilateral DAOC is a rhombus .

QUESTION - 14

In the figure A, B, C, D, E are the points on a circle with centre O ED is parallel to $\mathrm{OA} . \angle \mathrm{OAB}=65^{\circ}$, $\angle \mathrm{OCB}=55^{\circ}, \angle \mathrm{ADE}=30^{\circ}$.

Find the measures of the following angles .
a) $\angle \mathrm{OBA}$
b) Angle made by the arc $A B C$ at the centre of the circle

c) $\angle \mathrm{ADC}$
d) $\angle \mathrm{BAD}$
e) $\angle \mathrm{OCD}$

QUESTION - 15

In the figure A, B, C, D, E are the points on a circle with centre O. The lines $A E$ and $C D$ are extended to meet at P. The lines $A D$ and $C E$ intersect at \mathbf{Q}. The line $\mathbf{C B}$ is extended to F.
 $\angle \mathrm{ABF}=50^{\circ}$.
a) Find the measures of the following angles . $\angle \mathrm{ABC}, \quad \angle \mathrm{AEC}, \quad \angle \mathrm{AOC}, \quad \angle \mathrm{ADP}$.
b) Prove that $\angle A P C+\angle A Q C=\angle A O C$.

QUESTION - 16

In the figure , AB and CD are mutually perpendicular chords of the circle $A B$ and $C D$ intersect at $M . E$ is a point on the line $A B$ extended . P and Q are the other two points on the circle . $\angle \mathrm{CBE}=150^{\circ}$.
a) What is the measure of $\angle \mathrm{CBA}$?

b) What are the measures of the angles of the triangle AMD ?
c) What is the measure of the central angle of the arc APC ?
d) What is the sum of the central angles of the arcs APC and BQD ?
e) Prove that the arcs APC and BQD joined together would make half the circle .

QUESTION - 17

In the figure , $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are the points on the circle with centre $\mathrm{O} . \angle \mathrm{BAC}=5 \mathbf{0}^{\circ}$
a) What is the central angle of the small arc BC ?
b) Draw a circle of radius 3 centimetres and a triangle of angles $50^{\circ}, 60^{\circ}, 70^{\circ}$ with all the three vertices on this circle .

QUESTION - 18
In the figure A , B , C , D are the points on the circle . $\angle \mathrm{ADB}=50^{\circ}, \angle \mathrm{BAC}=60, \angle \mathrm{CBD}=40^{\circ}$.

Find the measures of the following .
a) $\angle \mathrm{ACB}$
b) $\angle \mathrm{BDC}$
c) $\angle \mathrm{CAD}$

d) $\angle \mathrm{ABD}$
e) Central angle of the arc DAB .

In the figure, the circles on the left and right intersect the middle circle at $\mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}$. and the lines joining them meet the left and right circles at $\mathrm{A}, \mathrm{B}, \mathrm{C}, \angle \mathrm{A}=75^{\circ}, \angle \mathrm{B}=65^{\circ}$
a) What is the measure of $\angle \mathrm{AED}$?
b) Find the measures of the angles of the quadrilateral DFGE .
c) Find three triangles with same angles from the figure .

d) Prove that $\frac{C F}{B C}=\frac{C G}{A C}$.

QUESTION - 20

In the figure , the circles on the left and right intersect the middle circle at $\mathbf{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}$. and the lines joining them meet the left and right circles at A, B, C, D. The line CB is extended to $\mathrm{E} . \angle \mathrm{A}=85^{\circ}, \angle \mathrm{ABE}=105^{\circ}$.
a) What are the measures of $\angle \mathrm{ABP}$ and \angle BPS ?
b) Find the measures of the angles of the quadrilateral PQRS .

c) Prove that $A B C D$ is a cyclic quadrilateral .

QUESTION - 21

In the figure $\mathbf{A B C D}$ is a trapezium $. \mathrm{AD}=\mathrm{BC}$. A line drawn parallel to AD through C meets AB at E .

a) If $\angle B A D=x^{0}$, what is the measure of \angle BEC ?
b) Prove that AECD is a parallelogram .
c) If $\angle B A D=x^{0}$, what is the measure of $\angle C B E$?
d) Prove that an isosceles trapezium is cyclic .

QUESTION - 22
In quadrilateral $\mathrm{ABCD}, \angle \mathrm{A}: \angle \mathrm{B}: \angle \mathrm{C}: \angle \mathrm{D}=1: 2: 5: 4$.
a) If $\angle A=x^{0}$, what are the measures of other angles of $A B C D$?
b) What is the sum of the angles of a quadrilateral ?
c) Prove that ABCD is cyclic .
d) Which of the following is not a cyclic quadrilateral ?

Rectangle, square, parallelogram , isosceles trapezium .
QUESTION - 23
In the figure two chords $A B$ and $C D$ of a circle are intersect at \mathbf{P}.
a) If $\angle A C D=x^{0}$, what is the value of $\angle A B D$?
b) Check whether the angles of the triangles APC and BPD are equal or not
c) Prove that $P A \times P B=P C \times P D$.

d) If $A B=11$ centimetres , $P B=3$ centimetres and $P D=4$ centimetres, what is the length of the chord CD ?

QUESTION - 24

In the figure two chords $A B$ and $C D$ of the circle are extended to meet at \mathbf{P}.
a) If $\angle A C D=60^{\circ}$, what is the value of $\angle A B D$?

b) Check whether the angles of the triangles APC and BPD are equal or not .
c) Prove that $P A \times P B=P C \times P D$.
d) If $A B=9$ centimetres , $P B=6$ centimetres and $P D=5$ centimetres, what is the length of the chord $C D$?

QUESTION - 25

In the figure , $A B$ is the diameter of the circle and
P is a point on it. $C D$ is a chord perpendicular to $A B$ through \mathbf{P}.
a) If $\angle A B D=x^{0}$, what is the value of $\angle A C D$?
b) Check whether the angles of the triangles APC and BPD
 are equal or not .
c) " P is the midpoint of $C D$ " Is this statement correct ? Justify your answer .
d) Prove that $P A \times P B=P C^{2}$
e) If $A B=13$ centimetres and $P A=9$ centimetres, what is the length of the chord CD ?

QUESTION - 26

In the figure , $A B$ is the diameter of the semicircle and P is a point on it.A line drawn through \mathbf{P} perpendicular to $A B$ meets the semicircle at $C . A B=10$ centimetres, $P B=2$ centimetres .

a) What is the length of $\mathbf{P A}$?
b) If a square is drawn with PC as side, what is its area ?
c) Draw a rectangle of length 5 centimetres and breadth $\mathbf{3}$ centimetres and draw a square of the same area .

QUESTION - 27

In the figure , $A B$ is the diameter of the circle and P is a point on it . A line drawn through \mathbf{P} perpendicular to $A B$ meets the circle at C. $A B=8$ centimetres, PA $=5$ centimetres .
a) What are the lengths of PB and PC ?

b) Draw an equilateral triangle with a side $\sqrt{60}$ centimetres .

QUESTION - 28

In the figure, two chords $A B$ and $C D$ of the circle intersect at P. $A B=8$ centimetres , $P A=6$ centimetres
a) What is the length of PB ?
b) What is the area of the rectangle with length PD and breadth PC ?
c) Draw a rectangle of length 5 centimetres and breadth

3 centimetres . Draw another rectangle of the same area with a side 7 centimetres .

QUESTION - 29

In the figure O is the centre of the circle The diameter $C D$ cuts the chord $A B$ at P. $A B=13$ centimetres , $P A=5$ centimetres , $O P=3$ centimetres .
a) What is the length of PB ?

b) If the radius of the circle is taken as \mathbf{r} centimetres, what is the length of $\mathbf{P D}$?
c) What is the relation among the lengths of the lines $P A, P B, P C$ and PD ? d) What is the radius of the circle ?

