First Mid term Test

Std : XI
 Subject : Chemistry
 PART - I

Marks : $\mathbf{2 5}$
Time : 1 hrs

Choose the best answer :

1) The equivalent mass of a trivalent metal element is $9 \mathrm{~g} \mathrm{eq}^{-1}$, the molar mass of its anhydrous oxide is \qquad
a) 102 g
b) 27 g
c) 270 g
d) 78 g
2) Total number of electrons present in 1.7 g of ammonia is
a) 6.022×10^{23}
b) $6.022 \times 10^{22} / 1.7$
c) $6.022 \times 10^{24} 1.7$
d) $6.022 \times 10^{23 /}$
1.7
3) The equivalent mass of potassium permanganate in alkaline medium is
a) 31.6
b) 52.7
c) 79
d) none of these
4) The oxidation state of C in $\mathrm{CH}_{2} \mathrm{~F}_{2}$ is
a) +1
b) -1
c) -2
d) 0
5) Which of the following reaction represents reduction, according to classical concept?
a) $4 \mathrm{Fe}+3 \mathrm{O}_{2} \longrightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}$
b) $\mathrm{H}_{2} \mathrm{~S}+\mathrm{Cl}_{2} \longrightarrow 2 \mathrm{Hcl}+\mathrm{S}$
c) Fe^{2+} \qquad d) $\mathrm{CuO}+\mathrm{C} \longrightarrow \mathrm{Cu}+\mathrm{CO}$

PART - II

Answer any 3 questions :

6) What is the empirical formula of
i) Fructose ($\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$)
ii) Caffeine ($\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}$)
7) What do you understand by the term mole?
8) What are limiting reagents ?
9) Calculate the gram equ valent mass of KMnO_{4}.

PART - III

Answer any 3 questions: Q.NO. 13 is compulsory

10) A compound on analysis gave the following percentage composition
$\mathrm{C}=54.55 \% \mathrm{H}=9.09 \% \mathrm{O}=36.36$ \% Determine the empirical formula of the compound.
11) Distinguish b/w oxidation and reduction
12) The balanced equation for a reaction is given below

$$
2 x+3 y \longrightarrow 4 I+m
$$

When 8 moles of x reacts with 15 moles of y, then
i) which is the limiting reagent?
ii) ca culate the amount of products formed?
13) Balance the following equation using oxidation number method.
$\mathrm{As}_{2} \mathrm{~S}_{3}+\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{3} \mathrm{AsO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{NO}$

> PART - IV

Answer Any 1 of the following:

14) a) Balance the following equation by ion electron method.
$\mathrm{KMnO}_{4}+\mathrm{FeSO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{MnSO}_{4}+\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{K}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}$
(or)
b) A compound on analysis gave $\mathrm{Na}=14.31 \% \mathrm{~S}=9.97 \% \mathrm{H}=6.22 \%$ and $\mathrm{O}=69.5 \%$. Calculate the molecular formula of the compound if all the hydrogen in the compound is present in combination with oxygen as water of crystallization. (Molecular mass is 322).
15) a) In a reaction $x+y+z_{2} \longrightarrow x y z_{2}$, identify the limiting reagent if any, in the following reaction mixtures.
a) 200 atoms of $x+200$ atoms of $y+50$ molecules of z_{2}
b) 1 mole of $x+1$ mole of $y+3$ mole of z_{2}
c) 50 atoms of $x+25$ atoms of $y+50$ molecules of z_{2}
d) 2.5 mole of $x+5$ mole of $y+5$ mole of z_{2}
(or)
(b) Balance the following equations by oxidation number method.

$$
\mathrm{KMnO}_{4}+\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{MnSO}_{4}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

