

PART - III

(இயற்பியல் / PHYSICS)

(English Version)

Time Allowed

: 2.00 Hours]
[Maximum Marks : 50

Instructions:
(1) Check the question paper for fairness of printing. If there is any lack of fairness, inform the Hall Supervisor immediately.
(2) Use Blue or Black ink to write and underline and pencil to draw diagrams.

Note: (i) Answer all the questions. $10 \times 1=10$
(ii) Choose the most appropriate answer from the given four alternatives and write the option code and the corresponding answer.

1. An electric dipole consists of two charges of $0.1 \mu \mathrm{C}$ separated by a distance of 2.0 cm . The dipole is placed in an external field of $10^{5} \mathrm{~N} / \mathrm{C}$. What maximum torque does the field exert on the dipole?
(a) $4 \times 10^{-4} \mathrm{Nm}$
(b) $4 \times 10^{4} \mathrm{Nm}$
(c) $4 \times 10^{-5} \mathrm{Nm}$
(d) $4 \times 10^{5} \mathrm{Nm}$
2. If voltage applied on a capacitor is increased from V to 2 V , choose the correct conclusion.
(a) Q remains the same, C is doubled
(b) Q is doubled, C doubled
(c) C remains same, Q doubled
(d) Both Q and C remain same
3. A toaster operating at 240 V has a resistance of 120Ω. The power is
(a) 240 W
(b) 400 W
(c) 2 W
(d) 480 W
4. As the temperature increases, the electrical resistance
(a) Increases for both conductors and semiconductors
(b) Decreases for both conductors and semiconductors
(c) Increases for conductors but decreases for semiconductors
(d) Decreases for conductors but increases for semiconductors
5. An electric dipole is placed at an alignment angle of 30° with an electric field of $2 \times 10^{5} \mathrm{NC}^{-1}$. It experiences a torque equa to 8 Nm . The charge on the dipole if the dipole length is 1 cm is
(a) 4 mC
(b) 8 mC
(c) 5 mC
(d) 7 Mc
6. In meter bridge for measurement of resistance, the known and the unknown resistance are interchanged. The error so removed is
(a) end correction
(b) gross error
(c) random error
(d) due to temperature effect
7. The temperature coefficient of resistance of a wire is 0.00125 per ${ }^{\circ} \mathrm{C}$. At $20^{\circ} \mathrm{C}$, its resistance is 1Ω. The resistance of the wire will be 2Ω at
(a) $800^{\circ} \mathrm{C}$
(b) $700^{\circ} \mathrm{C}$
(c) $850^{\circ} \mathrm{C}$
(d) $820^{\circ} \mathrm{C}$
8. Two identical conducting balls having positive charges q_{1} and q_{2} are separated by a centre to centre distance r. If they are made to touch each other and then separated to the same distance, the force between them will be
(a) less than before
(b) same as before
(c) more than before
(d) zero
9. The electric field due to point charge at a distance of 3 m from it is $500 \mathrm{NC}^{-1}$. The magnitude \circ the charge is $\left[\frac{1}{4 \pi \epsilon_{0}}=9 \times 10^{9} \mathrm{Nm}^{2} \mathrm{C}^{-2}\right]$
(a) $2.4 \mu \mathrm{C}$
(b) $1.0 \mu \mathrm{C}$
(c) $2.0 \mu \mathrm{C}$
(d) $0.5 \mu \mathrm{C}$
10. A carbon resistor of $(47 \pm 4.7) \mathrm{k} \Omega$ to be marked with rings of different colours for its identification. The colour code sequence will be....
(a) Yellow - Green - Violet - Gold
(b) Yellow - Violet - Orange - Silver
(c) Violet - Yellow Orange - Silver
(d) Green - Orange - Violet - Gold

PART - II

Note : Answer any five questions. Question No. 18 is compulsory. $5 \times 2=10$
11. State Joule's law of heating.
12. Define electric flux. Give its SI unit.
13. Distinguish between electric energy and electric power.
14. State the principle of Potentiometer.
15. What is called electric dipole? Give an example.
16. During lightning, it is safer to sit inside car than in an open ground or under tree. Why?
17. Distinguish between Polar molecules and Non - Polar molecules.
18. Calculate the equivalent resistance for the circuit which is connected to 12 V battery and also find the potential difference across 2Ω and 4Ω resistors in the circuit.

PART - III
Note : Answer any five questions. Question No. 26 is compulsory. $\quad 5 \times 3=15$
19. State and explain Kirchhoff's rules.

20 Obtain an expression for energy stored in the parallel plate capacitor.
21. Explain the equivalent resistance of a series resistance network.
22. The resistance of a nichrome wire at $0^{\circ} \mathrm{C}$ is 10Ω. If its temperature coeff c ent of resistance is $0004 /{ }^{\circ} \mathrm{C}$, find its resistance at boiling point of water. Comment on the result
[Turn over

PHYU12

23. Derive an expression for torque experienced by an electric dipole placed in the uniform electric field.
24. What is Seebeck effect? State the applications of Seebeck effect.
25. List the properties of electric field lines.
26. A parallel plate capacitor has square plates of side 5 cm and separated by a distance of 1 mm . (a) Calculate the capacitance of this capacitor. (b) If a 10 V battery is connected to the capacitor, what is the charge stored in any one of the plates? (The value of $\varepsilon_{o}=8.85 \times 10^{12} \mathrm{Nm}^{2} \mathrm{C}^{-2}$)

PART - IV

Note : Answer all the questions. $3 \times 5=15$
27. Obtain an expression for electric field due to an infinitely long charged wire. (OR)
Explain in detail the construction and working of Van de Graaff generator.
28. Calculate the electric field due to a dipole on its axial line.
(OR)
Explain the determination of the internal resistance of a cell using voltmeter.
29. Obtai the condition for bridge balance in Wheatstone s bridge.
(OR)
Describe the microscopic model of current and obtain general form of Ohm's law.

$$
-\infty \pm \infty \Phi \infty \Psi \infty \Omega \infty-
$$

HIGHER SECONDARY SECOND YEAR : FIRST MID - TERM TEST: AUGUST 2022
PHYSICS ANSWER KEY
Note:

1. Answers written with Blue or Black ink only to be evaluated.
2. Choose the most suitable answer in Part A from the given alternatives and write the option code nd the corresponding answer.
3. For answers in Part-II, Part-III and Part-IV like reasoning explanation, narration, description and listing of points, students may write in their own words but without changing the concepts and without skipping any point.
4. In numerical problems, if formula is not written, marks should be given for the remaining correct steps.
5. In graphical representation, physical variables for X -axis and Y -axis should be marked.

PART - I
Answer all the questions.
$10 \times 1=10$

Q. No.	Answer	Q. No.	Answer		
1	(a)	$4 \times 10^{-4} \mathrm{Nm}$	6	(a)	end correction
2	(c)	C remains same, Q doubled	7	(d)	$820^{\circ} \mathrm{C}$
3	(d)	480 W	8	(c)	more than before
4	(c)	Increases for conductors but decreases for semiconductors	9	(d)	$05 \mu \mathrm{C}$
5	(b)	8 mC	10	(b)	Yellow - Violet - Orange $-S i l v e r ~$

PART - II

Answer any five questions. Question number 18 is compulsory. $5 \times 2=10$

11	Joule's law of heating. It states that the heat develops in an electrical circuit due to the flow, current varies directly as (i) the square of the current (ii) the resistance of the circuit and (iii) the time of flow (i.e) $H=I^{2} R t$	2
12	Electric flux: The number of electric field lines crossing a given area kept normal to the electric field lines is called electric flux $\left(\Phi_{E}\right)$. Its \underline{S}.I unit is $\mathrm{Nm}^{2} \mathrm{C}^{-1}$. It is a scalar quantity.	2

> PART - III

Answer any five questions. Question number 26 is compu sory.

19	Kirchhoff first law (current law) It states that the algebraic sum of currents at any junction in a circuit is zero. ($\sum I=0$) Explanation: It is a statement of conservation of electric charge. Thus all charges that enter a given junction in a circuit must leave that junction. Current entering the junction is taken as positive and current leaving the junction is taken as negative. Applying this law at junction 'A' $I_{1} I_{2}-I_{3}-I_{4}-I_{5}=0$ (or) $I_{1}+I_{2}=I_{3}-I_{4}-I_{5}$ \qquad $11 / 2$ Marks Kirchhoff second law (voltage law) : It states that in a closed circuit the algebraic sum of the products of the current and resistance of each part of the circuit is equal to the total emf included in the circuit ($\Sigma \operatorname{IR}=\Sigma \xi$) Explanation: It is a statement of conservation of energy for an isolated system. The product ' $I R$ ' is taken as positive when we proceed along the direction of current and taken as negative when we proceed opposite to the direction of current. Similarly, The emf is considered as positive, when we proceed from negative to positive terminal of the cell and as negative, when we proceed from positive to negative terminal of the cell. \qquad 1 ½ Marks	3
20	Energy stored in capacitor: Capacitor is a device used to store charges and energy. When a battery is connected to the capacitor, electrons of total charge '-Q' are transferred from one plate to other plate. For this work is done by the battery This work done is stored as electrostatic energy in capacitor. To transfer $d Q$ ' for a potential difference ' V ', the work done s $\mathrm{dW}=\mathrm{VdQ}=\frac{Q}{C} \mathrm{dQ}$ $\left[\because \vee=\frac{Q}{c}\right]$ \qquad $1 / 2$ Mark The total work done to charge a capacitor, $\mathrm{W}=\int_{0}^{Q} \frac{Q}{C} \mathrm{dQ} ; \quad=\frac{1}{\mathrm{C}}\left[\frac{\mathrm{Q}^{2}}{2}\right]_{0}^{Q} ;=\frac{\mathrm{Q}^{2}}{2 \mathrm{C}} \quad \ldots \ldots . .1 \mathrm{Mak}$ This work done is stored as electrostatic energy of the capacitor, (i.e) $U_{E}=\frac{\mathrm{Q}^{2}}{2 \mathrm{C}}=\frac{1}{2} \mathrm{CV}^{2}$ $[\because Q=C V]$ \qquad .1/2 Mark	3

21	Resistors in Series: When two or more resistors are connected end to end, they are said to be in series Let $\mathbf{R}_{1}, \mathrm{R}_{2}$, R_{3} be the resistances of three resistors connected in series. Let "V" be the potential difference appled across this combination. In series connection i) Current through each resistor will be same (I) ii) But potential difference across different resistor will be different. Let V_{1}, V_{2}, V_{3} be the potential difference across R_{1}, R_{2}, R_{3} respectively, then from Ohm's law. $\mathrm{V}_{1}=I \mathrm{R}_{1} ; \mathrm{V}_{2}=I \mathrm{R}_{2}, \mathrm{~V}_{3}=I \mathrm{R}_{3}$ Total potential difference, $V=V_{1}+V_{2}+V_{3} ; \quad=I R_{1}+I R_{2}+I R_{3}$ $\begin{equation*} V=I\left[R_{1}+R_{2}+R_{3}\right] \tag{1} \end{equation*}$ \qquad Let $R s$ be the equivalent resistance in series connection, then $V=\operatorname{R}_{s} \ldots \ldots \ldots . .(2)$ From equation (1) and (2), we have $\mathrm{IR}_{\mathrm{s}}=\mathrm{I}\left[\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}\right] ; \therefore \mathrm{R}_{\mathrm{s}}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}$ When resistances are connected in series, the equivalent resistance is the sum of the individual resistances. The equivalent resistance in series connection will be greater than each individual resistance.	3
22	As the temperature increases the resistance of the wire also increases. \qquad 1Mark	3
23	Torque experienced by the dipole in electric field: Let a dipole of moment \vec{p} is placed in an uniform electric field \vec{E} The force on ' +q ’ $=+\mathrm{q} \vec{E} ;{ }^{\prime}-\mathrm{q}$ ’ $=-\mathrm{q} \vec{E}$ Then the total force acts on the dipole is zero. The total torque on the dipole about the point ' O ' $\quad\|\vec{\tau}\|=\|\overrightarrow{\mathrm{OA}}\|\|-q \vec{E}\| \sin \theta+$ $\|\overrightarrow{\mathrm{OB}}\|\|q \vec{E}\| \sin \theta$ $\tau=(O A+O B) q E \sin$; $\tau=2 a q E \sin \theta \quad \because[O A=O B=a]$ $\boldsymbol{\tau}=p E \sin \theta$ (Where $2 a q=p \rightarrow$ dipole moment) In vector no ation, $\vec{\tau}=\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{E}}$. The torque is maximum, when $\theta=90^{\circ}$	3

24	Seebeck effect: Seebeck discovered that in a closed circut consisting of two dissimilar metals, when the junctions are maintained at different temperatures an emf (potential difference) is developed Th s is called Seebeck effect. The cur ent that flows due to the emf developed is called thermoelectric current. The two dissimilar metals connected to form two junctions is known as thermocouple. If hot and cold junctions are interchanged, the direction of current also reversed. Hence Seebeck effect is reversible. $1^{1 ⁄ 2}$ Marks Applications: Seebeck effect is used in thermoelectric generators (Seebeck generators) This effect is utilized in automobiles as automotive thermoelectric generators Seebeck effect is used in thermocouples and thermopiles. (Any 3 applications: $3 \times 1 / 2=11 / 2$ Marks)	3
25	Properties of electric field lines: 1) They starts from positive charge and end at negative charge or at infinity. 2) The electric field vector at a point in space is tangential to the electric field line at that point. 3) The electric field lines are denser in a region where the electric field has larger magnitude and less dense in region where the electric field is of smaller magnitude. (i.e) the number of lines passing through a given surface area perpendicular to the line is proportional to the magnitude of the electric field. 4) No two electric field lines intersect each other 5) The number of electric field lines that emanate from the positive charge or end at a negative charge is directly proportional to the magnitude of the charges.	3
26	(a) The capact nce of the capacitor is $C=\frac{\epsilon_{0} \mathrm{~A}}{\mathrm{~d}} ; \frac{8.854 \times 10^{-12} \times 25 \times 10^{-4}}{1 \times 1{ }^{3}}$ $\begin{aligned} & =221.2 \times 10^{-13} \mathrm{~F} ; \\ & \mathrm{C}=22.12 \times 10^{-12} \mathrm{~F} ;=22.12 p \mathrm{~F} \end{aligned}$ 1 ½ Marks (b) The charge stored in any one of the plates i $Q=C V$, Then $\begin{aligned} & Q=22.12 \times 10^{-12} \times 10=221.2 \times 10^{-12} \mathrm{C} \\ & Q=221.2 p \mathrm{C}------\quad 1 \frac{1}{2} \text { Marks } \end{aligned}$	3

PART - IV
Answer all the questions.

27	Electric field due to infinitely long charged wire: Consider an infinitely long straight wire of uniform linear charge density ' λ '. Let ' P ' be a point at a distance ' r ' from the wire. Let ' E ' be the electric field at ' P '. Consider a cylindrical Gaussian surface of length ' L ' and radius ' r ' The electric flux through the top surface, $\Phi_{\text {tap }}=\int \vec{E} \cdot \overrightarrow{d A}=\int E d A \cos 90^{\circ}=0$ The electric flux through the bottom surface, $\Phi_{\text {bottom }}=\int \vec{E} \cdot \overrightarrow{d A}=\int E d A \cos 90^{\circ}=0$ Then the total electric flux through the curved surface, $\Phi_{\text {curve }}=\int \vec{E} \cdot \overrightarrow{d A}=\int E d A \cos 90^{\circ}=E \int d A$ $\Phi_{\text {curve }}=\mathrm{E} 2 \pi \mathrm{rL}$ Then the total electric flux through the Gaussian surface, $\Phi_{\mathrm{E}}=\Phi_{\mathrm{tap}}+\Phi_{\text {bottom }}+\Phi_{\text {curve }} ; \Phi_{\mathrm{E}}=\mathrm{E}(2 \pi \mathrm{rL})$ By Gauss law, $\Phi_{\mathrm{E}}=\frac{Q_{\text {in }}}{\varepsilon_{0}} ; \mathrm{E}(2 \pi \mathrm{rL})=\frac{\lambda L}{\varepsilon_{0}}$; $\mathrm{E}=\frac{\lambda}{2 \pi \varepsilon_{0} r} \quad \operatorname{In} \text { vector notation, } \vec{E}=\frac{\lambda}{2 \pi \varepsilon_{0}} \hat{r}$ Here $\hat{r} \rightarrow$ unit vector perpendicular to the curved surface outwards. If $\lambda>0$, then \vec{E} points perpendicular outward (\hat{r}) from the wire and if λ <0, then \vec{E} points perpendicular inward $(-\hat{r})$. (OR) Van de Graff Generator: It is designed by Robert Van de Graff. It produces large electro static potential difference of about $10^{7} \mathrm{~V}$ Principle: Electro static induction, Action of points Construction: It consists of large hollow spherical conductor ' A ' fixed on the insulating stand.Pulley ' B ' is mounted at the centre of the sphere and another pulley ' C ' is fixed at the bottom. A belt made up of insulating material like silk or rubber runs over the pulleys.	5

The pulley ' C ' is driven continuously by the electric motor. Two comb shaped metallic conductor D and E are fixed near the pulleys. The comb 'D' i maintained at a positive potential of $10^{4} \mathrm{~V}$ by a power supply. The upper comb ' E ' is connected to the inner side of the hollow metal sphere.
Working:
Due to the high electric field near comb ' D ', air between the belt
 and comb 'D' gets ionized. The positive charges are pushed towards the belt and negative charges are attracted towards the comb ' D '.
The positive charges stick to the belt and move up. When the positive charges reach the comb ' E ' a large amount of negative and positive charges are induced on either side of comb ' E ' due to electrostatic induction.
As a result, the positive charges are pushed away from the comb ' E ' and they reach the outer surface of the sphere.

These positive charges are distributed uniformly on the outer surface of the hollow sphere. At the same time, the negative charges neutralize the positive charges in the belt due to corona discharge before it passes over the pulley. When the belt descends, it has almost no net charge.
This process continues until the outer surface produces the potential difference of the order of $10^{7} \mathrm{~V}$ which is the limiting value.

Beyond this, the charge starts leaking to the surroundings due to ionization of ar It is prevented by enclosing the machine in a gas illed steel chamber at very high pressure.

Applications:

The high voltage produced in this Van de Graff generator is used to accelerate positive ions (Protons and Deuterons) for nuclear disintegrations and other applications.

28 Electric field due to dipole on its axial line:

Consider a dipole $A B$ along X - axis. Its dipole moment be $p=2 q a$ and its direction be along $-q$ to $+q$.
Let ' C ' be the point at a di tance ' r from the midpoint ' O ' on its axial line.

Electric field at C due to +q

$\overrightarrow{\mathrm{E}}_{+}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{(r-a)^{2}} \hat{\mathrm{p}}$
Electric field at C due to -q
$\overrightarrow{\mathrm{E}}-=-\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{(r+a)^{2}} \hat{\mathrm{p}}$

Since +q is located closer to point 'C' than $-\mathrm{q}, \vec{E}+>\vec{E}$ - .
By superposition principle, the total electric field at ' C ' due to dipole is, $\vec{E}_{\text {tot }}=\vec{E}_{+}+\overrightarrow{\mathrm{E}}-$
$\overrightarrow{\mathrm{E}}_{\text {tot }}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{(r-a)^{2}} \hat{\mathrm{p}}-\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{(r+a)^{2}} \hat{\mathrm{p}}$
$\overrightarrow{\mathrm{E}}_{\text {ot }}=\frac{1}{4 \pi \varepsilon_{0}} \mathrm{q}\left[\frac{1}{(r-a)^{2}}-\frac{1}{(r+a)^{2}}\right] \hat{\mathrm{p}}$;
$\overrightarrow{\mathrm{E}}_{\text {tot }}=\frac{1}{4 \pi \varepsilon_{0}} \mathrm{q}\left[\frac{(r+a)^{2}-(r-a)^{2}}{(r-a)^{2}(r+a)^{2}}\right] \hat{\mathrm{p}}$
$\overrightarrow{\mathrm{E}}_{\text {tot }}=\frac{1}{4 \pi \varepsilon_{0}} \mathrm{q}\left[\frac{r^{2}+a^{2}+2 r a-r^{2}-a^{2}+2 r a}{((r-a)(r+a))^{2}}\right] \hat{\mathrm{p}}$
$\overrightarrow{\mathrm{E}}_{\text {tot }}=\frac{1}{4 \pi \varepsilon_{0}} \mathrm{q}\left[\frac{4 r a}{\left(r^{2}-a^{2}\right)^{2}}\right] \hat{\mathrm{p}}$
Here the direction of total electric field is the dipole moment \hat{p}
If $r \gg \mathrm{a}$, then neglecting a^{2}. We get $\overrightarrow{\mathrm{E}}_{\mathrm{t} o t}=\frac{1}{4 \pi \varepsilon_{0}} \mathrm{q}\left[\frac{4 r a}{r^{4}}\right] \hat{\mathrm{p}}$;
$=\frac{1}{4 \pi \varepsilon_{0}} \mathrm{q}\left[\frac{4 a}{r^{3}}\right] \hat{\mathrm{p}}$
$\vec{E}_{\text {tot }}=\frac{1}{4 \pi \varepsilon_{0}} \frac{2 \vec{p}}{r^{3}} \quad[q 2 a \hat{p}=\vec{p}]$

Internal resistance of a cell:

A real battery is made of electrodes and electrolyte. There is resistance to the flow of charges within the battery and this resistance is called internal resistance (r)

The emf of the cell is measured by connecting high resistance voltmeter across it without connecting the external resistan e R. This circuit may be considered as open, the voltmeter reading gives the emf (ξ) of the cell. Then external resistance is included in the circuit and current ' 1 ' is established in the circuit.

	This circuit is then considered as close, the voltmeter reading gives the potential difference (V) ac os ' R ' By Ohm's law, = IR (or) $\mathrm{I}=\frac{\mathrm{V}}{\mathrm{R}} \ldots \ldots \ldots . . .(1)$ Due to internal resistance of the cell, the voltmeter reads the value " V " which is less than the emf (ξ). It is because, certain amount of voltage (Ir) has dropped across the internal resistance r^{\prime} Hence $\begin{aligned} & \mathrm{V}=\xi-\mathrm{Ir} \quad---(2)(\mathrm{or}) \mathrm{Ir}=\xi-\mathrm{V} \\ & \therefore \quad \mathrm{r}=\frac{\xi-\mathrm{V}}{\mathrm{I}} ;=\left[\frac{\xi-V}{\mathrm{~V}}\right] \mathrm{R} \end{aligned}$ Since ξ, V and R are known, internal resistance ' r ' and total current ' l ' can be determined. The power delivered to the circut is, $\mathrm{I}=\mathrm{I} \xi ;=\mathrm{I}(\mathrm{V}+\mathrm{Ir}) ;=\mathrm{I}(\mathrm{IR}+\mathrm{Ir})$ $P=12 R+12 r$ where, $I^{2} R \rightarrow$ power delivered to R ${ }^{12} r \rightarrow$ power delivered to r	
29	Wheatstone's bridge: An important application of Kirchhoff's laws is the Wheatstone's bridge. It is used to compare resistances and also helps in determining the unknown resistance in the electrical network. The bridge consists of four resistances $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}$ connected as shown. A galvanometer ' G ' is connected between B and D. A battery ' ξ ' is connected between A and C. Let $I_{1}, I_{2}, I_{3}, I_{4}$ currents through various branches and I_{G} be the current through the galvanometer Applying Kirchhoff's current law at B and D, $\begin{align*} & I_{1}-I_{G}-I_{3}=0 \tag{1}\\ & I_{2}+I_{G}-I_{4}=0 \tag{2} \end{align*}$ Applying Kirchhoff's voltage law ABDA and ABCDA, $\begin{align*} & I_{1} P+l_{G} G-I_{2} R=0 \tag{3}\\ & I_{1} P+I_{3} Q-I_{2} R-I_{4} S=0 \tag{4} \end{align*}$ At balanced condition, the potential at B and D are same, and hence the galvanometer shows zero deflection. So $\mathrm{IG}_{\mathrm{G}}=0$ Put this in equation (1), (2) and (3)	5

$$
\begin{array}{lll}
\mathrm{I}_{1}-\mathrm{I}_{3}=0 & \text { (or) } \quad \mathrm{I}_{1}=\mathrm{I}_{3} & ----(5) \\
\mathrm{I}_{2}-\mathrm{I}_{4}=0 & \text { (or) } \quad \mathrm{I}_{2}=\mathrm{I}_{4} & ----(6) \\
\mathrm{I}_{1} P-\mathrm{I}_{2} \mathrm{R}=0 & \text { (or) } \mathrm{I}_{1} P=\mathrm{I}_{2} \mathrm{R} & ---(7) \tag{7}
\end{array}
$$

Put equation (5) and (6) in (4)

$$
\begin{gather*}
I_{1} P+I_{1} Q-I_{2} R-I_{2} S=0 ; I_{1}(P+Q)-I_{2}(R+S)=0 \\
\therefore I_{1}(P+Q)=I_{2}(R+S) \tag{8}
\end{gather*}
$$

Divide equation (8) by (7)

$$
\begin{aligned}
& \frac{I_{1}(P+Q)}{I_{1} P}=\frac{I_{2}(R+S)}{I_{2} R} ; \quad \frac{(P+Q)}{P}=\frac{(R+S)}{R} \\
& 1+\frac{Q}{P}=1 \quad \frac{S}{R} ; \\
& \frac{Q}{P}=\frac{S}{R} \quad \text { (or) } \frac{P}{Q}=\frac{R}{S}
\end{aligned}
$$

(OR)
Microscopic model of current and Ohm' law:
Area of cross section of the conductor $=\mathrm{A}$
Number of electrons per unit volume $=n$, Applied electric field $=\vec{E}$
Drift velocity of electrons $=\boldsymbol{v d}$,
Charge of an electrons $=e$

Let ' $d x$ ' be the distance travelled by the electron in time ' $d t$ ', then

$$
\mathrm{v}_{\mathrm{d}}=\frac{d x}{d t} \quad(o r) \quad d x=\mathrm{v}_{\mathrm{d}} d t
$$

The number of electrons available in the volume of length ' $d x$ ' is

$$
=\mathrm{A} d x \mathrm{X} \mathrm{n} ;=\mathrm{A} \mathrm{v}_{\mathrm{d}} d t \mathrm{X} \mathrm{n}
$$

Then the total charge in this volume element is, $d Q=A v_{d} d t n e$
By definition, the current is given by $\mathrm{I}=\frac{d Q}{d t} ;=\frac{A v_{d} d t n e}{d t} ; \mathrm{I}=\mathbf{n e A} \mathrm{V}_{\mathrm{d}}$

Current density (J):

Current density (J) is defined as the current per unit area of cross section of the conductor. $\mathrm{J}=\frac{\mathrm{I}}{\mathrm{A}} ;=\frac{\mathrm{neA} v_{d}}{\mathrm{~A}} . \mathrm{J}=$ ne v_{d}. Its unit is Am^{-2}
In vector notation, $\overrightarrow{\mathrm{J}}=\mathrm{ne} \vec{v}_{d} ; \overrightarrow{\mathrm{J}}=\mathrm{ne}\left[-\frac{e \tau}{m} \vec{E}\right] ;=-\frac{n e^{2} \tau}{m} \vec{E}$
Where, $\frac{n e^{2} \tau}{m}=\sigma \rightarrow$ Conductivity; $\therefore \overrightarrow{\mathrm{J}}=-\sigma \vec{E}$
But conventionally we take the direction of current density as the direction of electric field. So the above equation becomes, $\vec{J}=\sigma \vec{E}$
This is called microscopic form of Ohm's law.

