Periodic Test -I, 2017-2018
 Class-XI
 Subject: Physics

Time: 90 Min.

Note: All questions are compulsory. Q.N. 1 to 4 carry 1 marks, 5 to 9 carry 2 marks, 10 to 16 carry $\mathbf{3}$ marks and $\mathbf{1 7}$ to $\mathbf{1 9}$ carry 5 marks each.
Use of calculators is not permitted.

1. Name the physical quantities whose dimensional formula is $\left[\mathrm{ML}^{2} \mathrm{~T}^{-3}\right]$.
2. Write expanded form of LASER \& it's one use.
3. Name the field particle and range of electromagnetic force.
4. Define unit of length parsec and express it in metre?
5. The acceleration-time graph of a body is shown below,

Draw velocity-time graph for the same motion.

6. A new system of units is proposed in which unit of mass is $\alpha \mathrm{kg}$, unit of length is $\beta \mathrm{m}$ and the unit of time is γ s. How much will the 52 J measure in this new unit system?
7. The velocity time graph of a body moving in a straight line is shown in the figure. Find the displacement and distance travelled by the body in 6 sec ?

8. The mass of a box measured by a grocer's balance is 2.300 kg .Two gold pieces of masses 20.15 g and 20.173 g are added to the box. What is (a) the total mass of the box, (b) the difference in the masses of the pieces to correct significant figures?
9. Frequency v of vibration of stretched string depends upon the length I of the string, mass per unit length m and the tension T in the string. Obtain dimensionally an expression for the frequency v of vibration of stretched string.
10. Derive an expression for centripetal acceleration for uniform circular motion.
11. An object is thrown at an angle 60 from horizontal with initial velocity $20 \mathrm{~m} / \mathrm{s}$. Calculate Maximum height and horizontal range.
12. A physical quantity P is related to four observables $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d as $P=\frac{a^{3} b^{2}}{\sqrt{c} d}$. The percentage errors in a, b, c and d are $1 \%, 3 \%, 4 \%$ and 2% respectively . What is the percentage in calculating quantity P ?
13. Find the magnitude of angular velocity and centripetal acceleration of a particle on the tip of a fan blade of length 30 cm rotating at 1200 rpm (rotation per minute).
14. A particle starts from origin at $t=0$ with a velocity $5.0 \mathrm{ims}^{-1}$ and moves in $x-y$ plane with a constant acceleration of $\{3.0 \mathrm{i}+2.0 \mathrm{j}\} \mathrm{ms}^{-2}$. What is the y-coordinates of the particle at the instant its x coordinate is 84 m ? What is the speed of the particle at this instant?
15. Two bodies are thrown with the same initial velocity u making angles α and (90- α) with the horizontal. What will be the ratio of (a) maximum heights attained by them and (b) their horizontal ranges?
16. Two parallel rail tracks run north-south. Train A moves north with a speed of $54 \mathrm{~km} \mathrm{~h}^{-1}$, and train B moves south with a speed of $90 \mathrm{~km} \mathrm{~h}-1$. What is the (a) velocity of B with respect to A?
(b) velocity of ground with respect to B ?
(c) velocity of a monkey running on the roof of the train A against its motion (with a velocity of $18 \mathrm{~km} \mathrm{~h}^{-1}$ with respect to the train A) as observed by a man standing on the ground ?
17. Using calculus derive first three equations of motion for uniformly accelerated rectilinear motion.
18. What is a projectile? Derive an expression for (a) trajectory (b) maximum height (c) horizontal range of a projectile projected with initial velocity u making an angle θ with respect to the horizontal.
19. Using parallelogram law of vector addition, obtain the expression for the magnitude and direction of the resultant of two vectors \mathbf{P} and \mathbf{Q} inclined at an angle $\theta\left(\theta<90^{\circ}\right)$. On a rainy day, rain was falling vertically with a speed of $35 \mathrm{~ms}^{-1}$. A wind starts blowing after some time with a speed of $12 \mathrm{~ms}^{-1}$ in East to West direction. In which direction should a boy waiting at a bus stop hold his umbrella?

